35-th Czech and Slovak Mathematical Olympiad 1986

- 1. Given $n \in \mathbb{N}$, let \mathscr{A} be a family of subsets of $\{1, 2, ..., n\}$. If for every two sets $B, C \in \mathscr{A}$ the set $(B \cup C) \setminus (B \cap C)$ has an even number of elements, find the largest possible number of elements of \mathscr{A} .
- 2. Let P(x) be a polynomial with integer coefficients of degree $n \ge 3$. If x_1, \ldots, x_m $(m \ge 3)$ are different integers such that

$$P(x_1) = P(x_2) = \cdots = P(x_m) = 1,$$

prove that P cannot have integer roots.

3. Prove that the entire space can be partitioned into "crosses" made of seven unit cubes as shown in the picture.

4. Let C₁, C₂, and C₃ be points inside a bounded convex planar set *M*. Rays l₁, l₂, l₃ emanating from C₁, C₂, C₃ respectively partition the complement of the set *M* ∪ l₁ ∪ l₂ ∪ l₃ into three regions *D*₁, *D*₂, *D*₃. Prove that if the convex sets A and B satisfy

$$A \cap l_j = \emptyset = B \cap l_j$$
 and $A \cap \mathscr{D}_j \neq \emptyset \neq B \cap \mathscr{D}_j$ for $j = 1, 2, 3,$

then $A \cap B \neq \emptyset$.

- 5. A sequence of natural numbers a_1, a_2, \ldots satisfies $a_1 = 1$, $a_{n+2} = 2a_{n+1} a_n + 2$ for $n \in \mathbb{N}$. Prove that for every natural *n* there exists a natural *m* such that $a_n a_{n+1} = a_m$.
- 6. Assume that $M \subset \mathbb{N}$ has the property that every two numbers m, n of M satisfy $|m-n| \ge mn/25$. Prove that the set M contains no more than 9 elements.

