2-nd Czech–Slovak Match 1996

Žilina, June 2–5, 1996

1. Show that an integer p > 3 is a prime if and only if for every two nonzero integers a, b exactly one of the numbers

$$N_1 = a + b - 6ab + \frac{p-1}{6}, \quad N_2 = a + b + 6ab + \frac{p+1}{6}$$

is a nonzero integer.

2. Let \star be a binary operation on a nonempty set *M*. That is, every pair $(a,b) \in M$ is assigned an element $a \star b$ in *M*. Suppose that \star has the additional property that

$$(a \star b) \star b = a$$
 and $a \star (a \star b) = b$ for all $a, b \in M$.

- (a) Show that $a \star b = b \star a$ for all $a, b \in M$.
- (b) On which finite sets M does such a binary operation exist?
- 3. The base of a regular quadrilateral pyramid π is a square with side length 2a and its lateral edge has length $a\sqrt{17}$. Let *M* be a point inside the pyramid. Consider the five pyramids which are similar to π , whose top vertex is at *M* and whose bases lie in the planes of the faces of π . Show that the sum of the surface areas of these five pyramids is greater or equal to one fifth the surface of π , and find for which *M* equality holds.
- 4. Decide whether there exists a function $f : \mathbb{Z} \to \mathbb{Z}$ such that for each $k = 0, 1, \dots, 1996$ and for any integer *m* the equation

$$f(x) + kx = m$$

has at least one integral solution x.

- 5. Two sets of intervals \mathscr{A}, \mathscr{B} on the line are given. The set \mathscr{A} contains 2m-1 intervals, every two of which have an interior point in common. Moreover, every interval from \mathscr{A} contains at least two disjoint intervals from \mathscr{B} . Show that there exists an interval in \mathscr{B} which belongs to at least *m* intervals from \mathscr{A} .
- 6. The points *E* and *D* are taken on the sides *AC* and *BC* respectively of a triangle *ABC*. The lines *AD* and *BE* intersect at *F*. Show that the areas of the triangles *ABC* and *ABF* satisfy

$$\frac{S_{ABC}}{S_{ABF}} = \frac{AC}{AE} + \frac{BC}{BD} - 1.$$

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović Typed in LATEX by Ercole Suppa www.imomath.com

1