Chinese IMO Team Selection Test 1999

Time: 4.5 hours each day.

First Day

- 1. Let $x_1, x_2, ..., x_n$ be positive reals whose sum equals 1. Find the maximum possible value of $\sum_{i=1}^{n} (x_i^4 x_i^5)$.
- 2. Find all prime numbers *p* with the property that, for all primes *q*, the remainer of *p* upon division by *q* is squarefree (i.e. not divisible by any square greater than 1).
- 3. Find the least *n* for which there exist *n* subsets $A_1, A_2, ..., A_n$ of set $S = \{1, 2, ..., 15\}$ satisfying:
 - (i) $|A_i| = 7$ for all *i*;
 - (ii) $|A_i \cap A_j| \leq 3$ for any two distinct i, j;
 - (iii) for any 3-element subset $M \subset S$ there is an A_k containing M.

Second Day

- 4. Let a circle touch the sides *AB*, *BC* of a convex quadrilateral *ABCD* at *G* and *H* and intersect *AC* at *E* and *F*. Find the condition *ABCD* must satisfy in order to exist a circle passing through *E*, *F* and touching *DA*, *DC*.
- 5. Let *m* be an even positive integer.
 - (a) Show that there exist integers x_1, x_2, \ldots, x_{2m} such that $x_i x_{i+m} = x_{i+1} x_{i+m-1} + 1$ for $i = 1, 2, \ldots, m-1$.
 - (b) Prove that, if $x_1, x_2, ..., x_{2m}$ satisfy (a), one can construct an infinite sequence $(y_k)_{k \in \mathbb{Z}}$ of integers such that $y_i = x_i$ for i = 1, ..., 2m and $y_k y_{k+m} = y_{k+1}y_{k+m-1} + 1$ for all integers *k*.
- 6. For all permutations $\tau = (x_1, \dots, x_{10})$ of numbers $1, 2, \dots, 10$, define

$$S(\tau) = \sum_{i=1}^{10} |2x_i - 3x_{i+1}|$$

(where $x_{11} = x_1$). Find the maximum and minimum values of $S(\tau)$ and all the permutations τ for which those are attained.

1

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com