Chinese IMO Team Selection Test 2000

Time: 4.5 hours each day.

First Day

- 1. Let *ABC* be a triangle with AB = AC. Let *D*, *E* be points on *AB*, *AC* respectively such that DE = AC. Line *DE* meets the circumcircle of triangle *ABC* at point *T*. Let *P* be a point on *AT*. Prove that PD + PE = AT if and only if *P* lies on the circumcircle of triangle *ADE*.
- 2. Given positive integers k, m, n with $1 \le k \le m \le n$, evaluate

$$\sum_{i=0}^{n} \frac{1}{n+k+i} \cdot \frac{(m+n+i)!}{i!(n-i)!(m+i)!}$$

- 3. For an integer $a \ge 2$, let N_a denote the number of positive integers k with the following property: the sum of squares of digits of k in base a representation equals k. Prove that:
 - (a) N_a is odd;
 - (b) For every $M \in \mathbb{N}$, there exists an integer $a \ge 2$ such that $N_a \ge M$.

Second Day

- Let *F* be the set of all polynomials Γ(x) with integer coefficients such that the equation Γ(x) = 1 has integer roots. Given a positive integer *k*, find the smallest integer m(k) > 1 such that there exists Γ ∈ *F* for which Γ(x) = m(k) has exactly *k* distinct integer roots.
- 5. (a) Let *a*, *b* be real numbers. Define the sequences (x_n) and (y_n) by $x_0 = 1$, $y_0 = 0$ and $x_{k+1} = ax_k - by_l$, $y_{k+1} = x_k - ay_k$ for k = 0, 1, 2, ... Prove that

$$x_k = \sum_{l=0}^{[k/2]} (-1)^l a^{k-2l} (a^2 + b)^l \lambda_{k,l},$$

where
$$\lambda_{k,l} = \sum_{m=l}^{[k/2]} {k \choose 2m} {m \choose l}.$$

- (b) Let u_k = Σ_{l=0}^[k/2] λ_{k,l}. For a fixed positive integer m, denote the remainder of u_k divided by 2^m as z_{m,k}. Prove that the sequence (z_{m,k}), k = 0, 1, 2, ... is periodic, and find the smallest period.
- 6. Given a positive integer *n*, let us denote $M = \{(x, y) \in \mathbb{Z} \mid 1 \le x, y \le n\}$. Consider all functions $f : M \to \mathbb{Z}$ which satisfy:

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

- (i) $f(x,y) \ge 0$ for all x, y;
- (ii) $\sum_{y=1}^{n} f(x,y) = n-1$ for each x = 1, ..., n;
- (iii) if $f(x_1, y_1)f(x_2, y_2) > 0$ then $(x_1 x_2)(y_1 y_2) \ge 0$.

Find the number N(n) of functions with the above properties. Determine the value of N(4).

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com