1-st Baltic Way

Riga, Latvia – November 24, 1990

- 1. Numbers 1, 2, ..., n are written around a circle in some order. What is the smallest possible sum of the absolute differences of adjacent numbers?
- 2. The squares of a squared paper are enumerated as shown on the picture. Devise a polynomial p(m,n) in two variables such that for any $m,n \in \mathbb{N}$ the number written in the square with coordinates (m,n) is equal to p(m,n).

٠.					
10	\cdot				
6	9	٠.	\cdot .		
3	5	8	12	\cdot	
1	2	4	7	11	\cdot

3. Given $a_0 > 0$ and c > 0, the sequence (a_n) is defined by

$$a_{n+1} = \frac{a_n + c}{1 - ca_n}$$
 for $n = 0, 1, ...$

Is it possible that $a_0, a_1, \dots, a_{1989}$ are all positive but a_{1990} is negative?

4. Prove that, for any real numbers a_1, a_2, \ldots, a_n ,

$$\sum_{i,j=1}^{n} \frac{a_i a_j}{i+j-1} \ge 0.$$

- 5. Let * be an operation, assigning a real number a*b to each pair of real numbers (a,b). Find an equation which is true (for all possible values of variables) provided the operation * is commutative or associative and which can be false otherwise.
- 6. Let ABCD be a quadrilateral with AD = BC and $\angle DAB + \angle ABC = 120^{\circ}$. An equilateral triangle DPC is erected in the exterior of the quadrilateral. Prove that the triangle APB is also equilateral.
- 7. The midpoint of each side of a convex pentagon is connected by a segment with the centroid of the triangle formed by the remaining three vertices of the pentagon. Prove that these five segments have a common point.
- 8. It is known that for any point P on the circumcircle of a triangle ABC, the orthogonal projections of P onto AB, BC, CA lie on a line, called a *Simson line* of P. Show that the Simson lines of two diametrically opposite points P_1 and P_2 are perpendicular.
- 9. Two congruent triangles are inscribed in an ellipse. Are they necessarily symmetric with respect to an axis or the center of the ellipse?
- 10. A segment *AB* is marked on a line *t*. The segment is moved on the plane so that it remains parallel to *t* and that the traces of points *A* and *B* do not intersect. The segment finally returns onto *t*. How far can point *A* now be from its initial position?

- 11. Prove that the modulus of an integer root of a polynomial with integer coefficients cannot exceed the maximum of the moduli of the coefficients.
- 12. Let m and n be positive integers. Show that 25m + 3n is divisible by 83 if and only if so is 3m + 7n.
- 13. Show that the equation $x^2 7y^2 = 1$ has infinitely many solutions in natural numbers.
- 14. Do there exist 1990 pairwise coprime positive integers such that all sums of two or more of these numbers are composite numbers?
- 15. Prove that none of the numbers $2^{2^n} + 1$, n = 0, 1, 2, ... is a perfect cube.
- 16. A closed polygonal line is drawn on a unit squared paper so that its vertices lie at lattice points and its sides have odd lengths. Prove that its number of sides is divisible by 4.
- 17. There are two piles with 72 and 30 candies. Two students alternate taking candies from one of the piles. Each time the number of candies taken from a pile must be a multiple of the number of candies in the other pile. Which student can always assure taking the last candy from one of the piles?
- 18. Numbers 1,2,...,101 are written in the cells of a 101 × 101 square board so that each number is repeated 101 times. Prove that there exists either a column or a row containing at least 11 different numbers.
- 19. What is the largest possible number of subsets of the set $\{1, 2, ..., 2n + 1\}$ such that the intersection of any two subsets consists of one or several consecutive integers?
- A creative task: propose an original competition problem together with its solution.

