46-th Bulgarian Mathematical Olympiad 1997 Fourth Round – May 1997

First Day

1. For an integer $n \ge 2$ and $k = \left\lfloor \frac{n-2}{3} \right\rfloor$, consider the polynomial

$$P_n(x) = \binom{n}{2} + \binom{n}{5}x + \binom{n}{8}x^2 + \dots + \binom{n}{3k+2}x^k.$$

- (a) Prove that $P_{n+3}(x) = 3P_{n+2}(x) 3P_{n+1}(x) + (x+1)P_n(x)$.
- (b) Find all integers *a* such that $P_n(a^3)$ is divisible by $3^{\left\lfloor\frac{n-1}{2}\right\rfloor}$ for all $n \ge 2$.
- 2. Let *M* be the centroid of a triangle *ABC*. Prove the inequality

$$\sin \angle CAM + \sin \angle CBM \le \frac{2}{\sqrt{3}}$$

3. Let *n* and *m* be natural numbers and let $m + i = a_i b_i^2$ for i = 1, 2, ..., n, where a_i, b_i are natural numbers and a_i is not divisible by a square greater than 1. Find all *n* for which there exists an *m* such that $a_1 + a_2 + \cdots + a_n = 12$.

Second Day

4. If a, b, c are positive real numbers with abc = 1, prove the inequality

$$\frac{1}{1+a+b} + \frac{1}{1+b+c} + \frac{1}{1+c+a} \le \frac{1}{2+a} + \frac{1}{2+b} + \frac{1}{2+c}.$$

5. In a triangle *ABC*, the bisectors of the angles at *B* and *C* meet the opposite sides at *M* and *N* respectively. The ray *MN* intersects the circumcircle of $\triangle ABC$ at *D*. Prove that

$$\frac{1}{BD} = \frac{1}{AD} + \frac{1}{CD}$$

6. Let X be a set of n + 1 elements, $n \ge 2$. Ordered *n*-tuples (a_1, \ldots, a_n) and (b_1, \ldots, b_n) formed from distinct elements of X are called *disjoint* if there exist distinct indices *i*, *j* such that $a_i = b_j$. Find the maximal number of pairwise disjoint *n*-tuples.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com