33-rd Bulgarian Mathematical Olympiad 1984 Fourth Round

First Day

- 1. Solve the equation $5^x \cdot 7^y + 4 = 3^z$ in nonnegative integers.
- 2. The diagonals of a trapezoid *ABCD* with bases *AB* and *CD* intersect in a point *O*, and AB/CD = k > 1. The bisectors of the angles *AOB*, *BOC*, *COD*, *DOA* intersect *AB*, *BC*, *CD*, *DA* respectively at *K*, *L*, *M*, *N*. The lines *KL* and *MN* meet at *P*, and the lines *KN* and *LM* meet at *Q*. If the areas of *ABCD* and *OPQ* are equal, find the value of *k*.
- 3. Points $P_1, P_2, ..., P_n, Q$ are given in space $(n \ge 4)$, no four of which are in a plane. Prove that if for any three distinct points $P_{\alpha}, P_{\beta}, P_{\gamma}$ there is a point P_{δ} such that the tetrahedron $P_{\alpha}P_{\beta}P_{\gamma}P_{\delta}$ contains the point Q, then n is an even number.

Second Day

4. Let $a, b, a_2, ..., a_{n-2}$ be real numbers with $ab \neq 0$ such that all the roots of the equation

 $ax^{n} - ax^{n-1} + a_{2}x^{n-2} + \dots + a_{n-2}x^{2} - n^{2}bx + b = 0$

are positive and real. Prove that these roots are all equal.

5. Let $0 < x_i < 1$ and $x_i + y_i = 1$ for i = 1, 2, ..., n. Prove that

$$(1 - x_1 x_2 \cdots x_n)^m + (1 - y_1^m)(1 - y_2^m) \cdots (1 - y_n^m) > 1$$

for any natural numbers *m* and *n*.

6. Let be given a pyramid *SABCD* whose base *ABCD* is a parallelogram. Let *N* be the midpoint of *BC*. A plane λ intersects the lines *SC*, *SA*, *AB* at points *P*, *Q*, *R* respectively such that $\overrightarrow{CP}/\overrightarrow{CS} = \overrightarrow{SQ}/\overrightarrow{SA} = \overrightarrow{AR}/\overrightarrow{AB}$. A point *M* on the line *SD* is such that the line *MN* is parallel to λ . Show that the locus of points *M*, when λ takes all possible positions, is a segment of the length $\frac{\sqrt{5}}{2}SD$.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com