31-st Bulgarian Mathematical Olympiad 1982 Fourth Round

First Day

- 1. Find all pairs of natural numbers (n,k) such that $(n+1)^k 1 = n!$.
- 2. Let *n* unit circles be given on a plane. Prove that on one of the circles there is an arc of length at least $2\pi/n$ not intersecting any other circle.
- 3. In a regular 2*n*-gonal prism, bases $A_1A_2...A_{2n}$ and $B_1B_2...B_{2n}$ have circumradii equal to *R*. If the length of the lateral edge A_1B_1 varies, the angle between the line A_1B_{n+1} and the plane $A_1A_3B_{n+2}$ is maximal for $A_1B_1 = 2R \cos \frac{\pi}{2n}$.

Second Day

4. If x_1, x_2, \ldots, x_n are arbitrary numbers from the interval [0,2], prove that

$$\sum_{i=1}^{n} \sum_{j=1}^{n} |x_i - x_j| \le n^2.$$

When is the equality attained?

5. Find all values of parameters a, b for which the polynomial

$$x^4 + (2a+1)x^3 + (a-1)^2x^2 + bx + 4$$

can be written as a product of two monic quadratic polynomials $\varphi(x)$ and $\psi(x)$, such that the equation $\psi(x) = 0$ has two distinct roots α, β which satisfy $\varphi(\alpha) = \beta$ and $\varphi(\beta) = \alpha$.

6. Find the locus of centroids of equilateral triangles whose vertices lie on sides of a given square *ABCD*.

1