Bulgarian Mathematical Olympiad 1972, IV Round

First Day

- 1. Prove that there are no exists integer numbers a, b, c such that for every integer number x the number: $A = (x+a)(x+b)(x+c) x^3 1$ is divisible by 9. (Iv. Tonov)
- 2. Solve the system of equations:

$$\begin{cases} \sqrt{\frac{y(t-y)}{t-x} - \frac{4}{x}} + \sqrt{\frac{z(t-z)}{t-x} - \frac{4}{x}} = \sqrt{x} \\ \sqrt{\frac{z(t-z)}{t-y} - \frac{4}{y}} + \sqrt{\frac{x(t-x)}{t-y} - \frac{4}{y}} = \sqrt{y} \\ \sqrt{\frac{x(t-x)}{t-z} - \frac{4}{z}} + \sqrt{\frac{y(t-y)}{t-z} - \frac{4}{z}} = \sqrt{z} \\ x + y + z = 2t \end{cases}$$

if the following conditions are satisfied: 0 < x < t, 0 < y < t, 0 < z < t. (Hr. Lesov)

3. Prove the equality:

$$\sum_{k=1}^{n-1} \frac{1}{\sin^2 \frac{(2k+1)\pi}{2n}} = n^2$$

where n is a natural number.

(Hr. Lesov)

Second day

- 4. Find maximal possible count of points which lying in or over a circle with radii R in such a way that the distance between every two points is greater than: $R\sqrt{2}$. (Hr. Lesov)
- 5. In a circle with radii *R* is inscribed a quadrilateral with perpendicular diagonals. From the intersecting point of the diagonals are drawn perpendiculars to the sides of the quadrilateral.
 - (a) prove that the feets of these perpendiculars P_1 , P_2 , P_3 , P_4 are vertices of the quadrilateral that is inscribed and circumscribed.
 - (b) Prove the inequalities: $2r_1 \le \sqrt{2}R_1 \le R$ where R_1 and r_1 are radiuces respectively of the circumcircle and inscircle to the quadrilateral: $P_1P_2P_3P_4$. When does equalities holds?

(Hr. Lesov)

1

- 6. It is given a tetrahedron *ABCD* for which two points of opposite edges are mutually perpendicular. Prove that:
 - (a) the four altitudes of ABCD intersects at a common point H;
 - (b) AH + BH + CH + DH , where p is the sum of the lengths of all edges of <math>ABCD and R is the radii of circumscribed around ABCD sphere.

(Hr. Lesov)

