Bulgarian Mathematical Olympiad 1967, IV Round

1. The numbers 12, 14, 37, 65 are one of the solutions of the equation:

$$xy - xz + yt = 182$$

What number of what letter corresponds?

2. Prove that:

- (a) if $y < \frac{1}{2}$ and $n \ge 3$ is a natural number then: $(y+1)^n \ge y^n + (1+2y)^{\frac{n}{2}}$;
- (b) if x, y, z and $n \ge 3$ are natural numbers for which: $x^2 1 \le 2y$ then $x^n + y^n \ne z^n$.

(9 points)

(5 points)

- 3. It is given a right-angled triangle *ABC* and its circumcircle *k*.
 - (a) prove that the radii of the circle k_1 tangent to the cathets of the triangle and to the circle k is equal to the diameter of the incircle of the triangle ABC.
 - (b) on the circle k may be found a point M for which the sum MA + MB + MC is biggest possible.

(11 points)

- 4. Outside of the plane of the triangle *ABC* is given point *D*.
 - (a) prove that if the segment *DA* is perpendicular to the plane *ABC* then orthogonal projection of the orthocenter of the triangle *ABC* on the plane *BCD* coincides with the orthocenter of the triangle *BCD*.
 - (b) for all tetrahedrons *ABCD* with base, the triangle *ABC* with smallest of the four heights that from the vertex *D*, find the locus of the foot of that height.

(10 points)

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović IATEX by Borislav Mirchev www.imomath.com

1