32-nd Bulgarian Mathematical Olympiad 1983 Third Round

First Day

1. Determine all natural numbers m, n such that the following inequality holds:

$2^3 - 1$	$3^3 - 1$	$m^3 - 1$	$n^3 - 1$
$\frac{1}{2^3+1}$.	$\overline{3^3+1}$	$\overline{m^3+1} =$	$\overline{n^3+2}$.

- 2. Let be given two intersecting circles $k_1(O_1, r_1)$, $k_2(O_2, r_2)$. Their common tangent meets k_1 at *A* and k_2 at *B*, and *C* is the common point of the circles closer to *AB*. The circumradius of $\triangle ABC$ is denoted as *r*, and $O_1O_2 = d$.
 - (a) Prove that if $\angle ACB = \angle O_1CO_2$, then $d^2 = r_1^2 + r_2^2 + r^2$.
 - (b) Prove that if $d^2 = r_1^2 + r_2^2 + r^2$, then $\angle ACB = \angle O_1CO_2$.
- A convex quadrilateral *H* is to be cut into *n* triangles whose vertices are at vertices or *H* or in the interior of *H*, and whose every side is either a side of *H* or a side of some other triangle. Prove that:
 - (a) such a cutting is possible for every even number *n*;
 - (b) it is not possible for n = 1983.

Second Day

- 4. The sequence (a_n) is defined inductively by $a_1 = a_3 = 1$, $a_2 = a_4 = -1$, and $a_n = a_{n-1}a_{n-2}a_{n-4}$. Determine a_{1983} .
- 5. Show that the unique pair of real numbers (p,q) for which the inequality

$$\left|\sqrt{1-x^2} - px - q\right| \le \frac{\sqrt{2}-1}{2}$$

is satisfied, is the pair $(p,q) = (-1, \frac{\sqrt{2}+1}{2})$.

6. Let be given a regular pyramid with base *ABCD* and top *V*. A point *M* on edge *BC*, satisfying BM = 2MC, is the point of *BC* nearest to line *AV*. Given that the distance from *M* to *AV* is *d*, find the volume of the pyramid.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com