28-th Bulgarian Mathematical Olympiad 1979

Third Round

First Day

1. Solve in positive integers the equation $\frac{19}{x^2} + \frac{79}{y^2} = \frac{z}{1979}$.

- 2. The incircle of triangle *ABC* is tangent to side *BC* at *T*. Prove that the incenter lies on the line that passes through the midpoints of *AT* and *BC*.
- 3. Suppose that $n \ge 5$ distinct triangles are such that any two have a side in common. Show that all *n* triangles have a common side.

Second Day

- 4. Let *m* and *n* be natural numbers such that $\sqrt{7} \frac{m}{n} > 0$. Prove that $\sqrt{7} \frac{m}{n} > \frac{1}{mn}$.
- 5. Solve in real numbers the system

$$\left\{ \begin{array}{rrr} \sqrt{1+(x+y)^2} &=& -y^6+2x^2y^3+4x^4\\ \sqrt{2x^2y^2-x^4y^4} &\geq& 4x^2y^3+5x^3. \end{array} \right.$$

- 6. In a regular *n*-gonal pyramid, α is the dihedral angle between a lateral face and the base, and β is the dihedral angle between two adjacent lateral faces.
 - (a) Prove that $\cos \frac{\beta}{2} = \sin \frac{\pi}{n} \sin \alpha$.
 - (b) Evaluate $\lim_{\alpha \to 0} \frac{\pi \beta}{\alpha}$.

