## Brazilian IMO & IbMO Team Selection Tests 1997

## First Test

Time: 4.5 hours

- 1. Let *ABC* be a triangle and *L* its circumscribed circle. The internal bisector of angle *A* meets *BC* at point *P*. Let  $L_1$  be the circle tangent to *AP*, *BP* and *L*. Similarly, let  $L_2$  be the circle tangent to *AP*, *CP* and *L*. Prove that the tangency points of  $L_1$  and  $L_2$  with *AP* coincide.
- 2. We say that a subset *A* of  $\mathbb{N}$  is *good* if for some positive integer *n* the equation x y = n admits infinitely many solutions with  $x, y \in A$ . If  $A_1, A_2, \dots, A_{100}$  are sets whose union is  $\mathbb{N}$ , prove that at least one of the  $A_i$ s is good.
- 3. Determine all positive integers x, y (x > 1) and all primes p and q satisfying  $p^x = 2^y + q^x$ .
- 4. Prove that it is impossible to arrange the numbers 1, 2, ..., 1997 around a circle in such a way that, if x and y are any two neighboring numbers, then  $499 \le |x-y| \le 997$ .
- 5. Let *ABC* be an acute-angled triangle with incenter *I*. Consider the point  $A_1$  on *AI* different from *A*, such that the midpoint of  $AA_1$  lies on the circumscribed circle of *ABC*. Points  $B_1$  and  $C_1$  are defined similarly.
  - (a) Prove that  $S_{A_1B_1C_1} = (4R + r)p$ , where *p* is the semi-perimeter, *R* is the circumradius and *r* is the inradius of *ABC*.
  - (b) Prove that  $S_{A_1B_1C_1} \ge 9S_{ABC}$ .

## Second Test

- 1. In an isosceles triangle ABC (AC = BC), let O be its circumcenter, D the midpoint of AC and E the centroid of DBC. Show that OE is perpendicular to BD.
- 2. Prove that any group of people can be divided into two disjoint groups *A* and *B* such that any member from *A* has at least half of his acquaintances in *B* and any member from *B* has at least half of his acquaintances in *A* (acquaintance is reciprocal).
- 3. Let *b* be a positive integer such that (b, 6) = 1. Show that there are positive integers *x* and *y* such that  $\frac{1}{x} + \frac{1}{y} = \frac{3}{b}$  if and only if *b* is divisible by some prime number of form 6k 1.



The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

- 4. Consider an  $N \times N$  matrix, where N is an odd positive integer, such that all its entries are -1,0 or 1. Consider the sum of the numbers in every line and every column. Prove that at least two of the 2N sums are equal.
- 5. Consider an infinite strip, divided into unit squares. A finite number of nuts is placed in some of these squares. In a step, we choose a square *A* which has more than one nut and take one of them and put it on the square on the right, take another nut (from *A*) and put it on the square on the left. The procedure ends when all squares has at most one nut. Prove that, given the initial configuration, any procedure one takes will end after the same number of steps and with the same final configuration.



The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com