Brazilian IMO & IbMO Team Selection Tests 2004

1. Let x, y, z be positive numbers such that $x^2 + y^2 + z^2 = 1$. Prove that

$$\frac{x}{1-x^2} + \frac{y}{1-y^2} + \frac{z}{1-z^2} \ge \frac{3\sqrt{3}}{2}.$$

- 2. Show that there exist infinitely many pairs of positive integers (m,n) such that $\binom{m}{n-1} = \binom{m-1}{n}$.
- 3. Prove that there exists a family $\mathscr{F} = \{A_1, A_2, \dots, A_r\}$ of *m*-element subsets of a given set $\{b_1, b_2, \dots, b_n\}$ of *n* elements such that
 - (i) $|A_i \cap A_j| \le m 2$ for all $A_i, A_j \in \mathscr{F}$ with $i \ne j$, and
 - (ii) $r \ge \left[\frac{1}{n} \binom{n}{m}\right]$.
- 4. Let *I* be the incenter of a triangle *ABC* with $\angle BAC = 60^{\circ}$. A line through *I* parallel to *AC* intersects *AB* at *F*. Let *P* be the point on the side *BC* such that 3BP = BC. Prove that $\angle BFP = \frac{1}{2} \angle ABC$.

- 1. Find the smallest positive integer *n* that satisfies the following condition: For every finite set of points on the plane, if for any *n* points from this set there exist two lines containing all the *n* points, then there exist two lines containing all points from the set.
- 2. Let $(x+1)^p(x-3)^q = x^n + a_1x^{n-1} + \cdots + a_{n-1}x + a_n$, where p,q are positive integers.
 - (a) Prove that if $a_1 = a_2$, then 3n is a perfect square.
 - (b) Prove that there exist infinitely many pairs (p,q) for which $a_1 = a_2$.
- 3. Determine the locus of points *M* in the plane of a given rhombus *ABCD* such that $MA \cdot MC + MB \cdot MD = AB^2$.
- 4. The sequence (L_n) is givn by $L_0 = 2$, $L_1 = 1$ and $L_{n+1} = L_n + L_{n-1}$ for $n \ge 1$. Prove that if a prime number p divides $L_{2k} 2$ for $k \in \mathbb{N}$, then p also divides $L_{2k+1} 1$.

1. Let $\Gamma_1, \Gamma_2, \Gamma_3, \Gamma_4$ be distinct circles such that Γ_1, Γ_3 are externally tangent at P, and Γ_2, Γ_4 are externally tangent at the same point P. Suppose that Γ_1 and Γ_2 ; Γ_2 and Γ_3 ; Γ_3 and Γ_4 ; Γ_4 and Γ_1 meet at A, B, C, D, respectively, and that all these points are different from P. Prove that

$$\frac{AB \cdot BC}{AD \cdot DC} = \frac{PB^2}{PD^2}.$$

- 2. An integer $n \ge 2$ is called *amicable* if there exist subsets A_1, A_2, \dots, A_n of the set $\{1, 2, \dots, n\}$ such that
 - (i) $i \notin A_i$ for any $i = 1, 2, \dots, n$,
 - (ii) $i \in A_i$ if and only if $j \notin A_i$, for any $i \neq j$,
 - (iii) $A_i \cap A_j \neq \emptyset$ for any $i, j \in \{1, ..., n\}$.
 - (a) Prove that 7 is amicable.
 - (b) Prove that *n* is amicable if and only if $n \ge 7$.
- 3. Set $\mathbb{Q}_1 = \{x \in \mathbb{Q} \mid x \ge 1\}$. Suppose that a function $f : \mathbb{Q}_1 \to \mathbb{R}$ satisfies the inequality $|f(x+y) f(x) f(y)| < \varepsilon$ for all $x, y \in \mathbb{Q}_1$, where $\varepsilon > 0$ is given. Prove that there exists a real number q such that

$$\left| \frac{f(x)}{x} - q \right| < 2\varepsilon \quad \text{for all } x \in \mathbb{Q}_1.$$

4. Let *b* be an integer greater than 5. For each positive integer *n*, consider the number

$$x_n = \underbrace{11\ldots 1}_{n-1}\underbrace{22\ldots 2}_n5,$$

written in base b. Prove that the following condition holds if and only if b = 10: There exists a positive integer M such that for every integer n greater than M, the number x_n is a perfect square.

