
Basic Concepts and Facts
Based on Chapter 2 of The IMO Compendium

The following is a list of the most basic concepts and theorems frequently
used in this book. We encourage the reader to become familiar with them and
perhaps read up on them further in other literature.

Algebra

Polynomials

Theorem. The quadratic equation ax2 + bx + c = 0 (a, b, c ∈ R, a 6= 0) has
solutions

x1,2 =
−b ±

√
b2 − 4ac

2a
.

The discriminant D of the quadratic equation is defined as D = b2 − 4ac. For
D < 0 the solutions are complex and conjugate to each other, for D = 0 the
solutions degenerate to one real solution, and for D > 0 the equation has two
distinct real solutions.

Definition. Binomial coefficients
(

n
k

)

, n, k ∈ N0, k ≤ n, are defined as

(

n

i

)

=
n!

i!(n − i)!
.

They satisfy
(

n
i

)

+
(

n
i−1

)

=
(

n+1
i

)

for i > 0 and also
(

n
0

)

+
(

n
1

)

+ · · · +
(

n
n

)

= 2n,
(

n
0

)

−
(

n
1

)

+ · · · + (−1)n
(

n
n

)

= 0,
(

n+m
k

)

=
∑k

i=0

(

n
i

)(

m
k−i

)

.

Theorem. [(Newton’s) binomial formula] For x, y ∈ C and n ∈ N,

(x + y)n =
n
∑

i=0

(

n

i

)

xn−iyi.

Theorem. [Bézout’s theorem] A polynomial P (x) is divisible by the binomial
x − a (a ∈ C) if and only if P (a) = 0.

Theorem. [The rational root theorem] If x = p/q is a rational zero of a polyno-
mial P (x) = anxn + · · ·+ a0 with integer coefficients and (p, q) = 1, then p | a0

and q | an.

Theorem. [The fundamental theorem of algebra] Every nonconstant polynomial
with coefficients in C has a complex root.

Theorem. [ Eisenstein’s criterion (extended)] Let P (x) = anxn + · · ·+ a1x + a0

be a polynomial with integer coefficients. If there exist a prime p and an integer
k ∈ {0, 1, . . . , n − 1} such that p | a0, a1, . . . , ak, p ∤ ak+1, and p2 ∤ a0, then
there exists an irreducible factor Q(x) of P (x) whose degree is at least k. In
particular, if p can be chosen such that k = n − 1, then P (x) is irreducible.
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Definition. Symmetric polynomials in x1, . . . , xn are polynomials that do not
change on permuting the variables x1, . . . , xn. Elementary symmetric polyno-
mials are σk(x1, . . . , xn) =

∑

xi1 · · ·xik
(the sum is over all k-element subsets

{i1, . . . , ik} of {1, 2, . . . , n}).
Theorem. Every symmetric polynomial in x1, . . . , xn can be expressed as a
polynomial in the elementary symmetric polynomials σ1, . . . , σn.

Theorem. [Vieta’s formulas] Let α1, . . . , αn and c1, . . . , cn be complex numbers
such that

(x − α1)(x − α2) · · · (x − αn) = xn + c1x
n−1 + c2x

n−2 + · · · + cn .

Then ck = (−1)kσk(α1, . . . , αn) for k = 1, 2, . . . , n.

Theorem. [Newton’s formulas on symmetric polynomials] Let

σk = σk(x1, . . . , xn)

and let sk = xk
1 +xk

2 + · · ·+xk
n, where x1, . . . , xn are arbitrary complex numbers.

Then
kσk = s1σk−1 − s2σk−2 + · · · + (−1)ksk−1σ1 + (−1)k−1sk .

Recurrence Relations

Definition. A recurrence relation is a relation that determines the elements of a
sequence xn, n ∈ N0, as a function of previous elements. A recurrence relation
of the form

(∀n ≥ k) xn + a1xn−1 + · · · + akxn−k = 0

for constants a1, . . . , ak is called a linear homogeneous recurrence relation of
order k. We define the characteristic polynomial of the relation as P (x) =
xk + a1x

k−1 + · · · + ak.

Theorem. Using the notation introduced in the above definition, let P (x) fac-
torize as P (x) = (x−α1)

k1 (x−α2)
k2 · · · (x−αr)

kr , where α1, . . . , αr are distinct
complex numbers and k1, . . . , kr are positive integers. The general solution of
this recurrence relation is in this case given by

xn = p1(n)αn
1 + p2(n)αn

2 + · · · + pr(n)αn
r ,

where pi is a polynomial of degree less than ki. In particular, if P (x) has k
distinct roots, then all pi are constant.

If x0, . . . , xk−1 are set, then the coefficients of the polynomials are uniquely
determined.

Inequalities

Theorem. The quadratic function is always positive; i.e., (∀x ∈ R) x2 ≥ 0.
By substituting different expressions for x, many of the inequalities below are
obtained.
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Theorem. [Bernoulli’s inequalities]

1. If n ≥ 1 is an integer and x > −1 a real number then (1 + x)n ≥ 1 + nx.

2. If a > 1 or a < 0 then for x > −1 the following inequality holds: (1+x)α ≥
1 + αx.

3. If a ∈ (0, 1) then for x > −1 the following inequality holds: (1 + x)α ≤
1 + αx.

Theorem. [The mean inequalities] For positive real numbers x1, x2, . . . , xn it
follows that QM ≥ AM ≥ GM ≥ HM , where

QM =

√

x2
1 + · · · + x2

n

n
, AM =

x1 + · · · + xn

n
,

GM = n
√

x1 · · ·xn, HM =
n

1/x1 + · · · + 1/xn
.

Each of these inequalities becomes an equality if and only if x1 = x2 = · · · = xn.
The numbers QM , AM , GM , and HM are respectively called the quadratic
mean, the arithmetic mean, the geometric mean, and the harmonic mean of
x1, x2, . . . , xn.

Theorem. [The general mean inequality] Let x1, . . . , xn be positive real num-
bers. For each p ∈ R we define the mean of order p of x1, . . . , xn by

Mp =
(

xp
1
+···+xp

n

n

)1/p

for p 6= 0, and Mq = limp→q Mp for q ∈ {±∞, 0}. In

particular, maxxi, QM , AM , GM , HM , and minxi are M∞, M2, M1, M0,
M−1, and M−∞ respectively. Then

Mp ≤ Mq whenever p ≤ q.

Theorem. [Cauchy–Schwarz inequality] Let ai, bi, i = 1, 2, . . . , n, be real num-
bers. Then

(

n
∑

i=1

aibi

)2

≤
(

n
∑

i=1

a2
i

)(

n
∑

i=1

b2
i

)

.

Equality occurs if and only if there exists c ∈ R such that bi = cai for i =
1, . . . , n.

Theorem. [Hölder’s inequality] Let ai, bi, i = 1, 2, . . . , n, be nonnegative real
numbers, and let p, q be positive real numbers such that 1/p + 1/q = 1. Then

n
∑

i=1

aibi ≤
(

n
∑

i=1

ap
i

)1/p( n
∑

i=1

bq
i

)1/q

.

Equality occurs if and only if there exists c ∈ R such that bi = cai for i =
1, . . . , n. The Cauchy–Schwarz inequality is a special case of Hölder’s inequality
for p = q = 2.
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Theorem. [Minkowski’s inequality] Let ai, bi (i = 1, 2, . . . , n) be nonnegative
real numbers and p any real number not smaller than 1. Then

(

n
∑

i=1

(ai + bi)
p

)1/p

≤
(

n
∑

i=1

ap
i

)1/p

+

(

n
∑

i=1

bp
i

)1/p

.

For p > 1 equality occurs if and only if there exists c ∈ R such that bi = cai for
i = 1, . . . , n. For p = 1 equality occurs in all cases.

Theorem. [Chebyshev’s inequality] Let a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ b2 ≥ · · · ≥
bn be real numbers. Then

n
n
∑

i=1

aibi ≥
(

n
∑

i=1

ai

)(

n
∑

i=1

bi

)

≥ n
n
∑

i=1

aibn+1−i.

The two inequalities become equalities at the same time when a1 = a2 = · · · =
an or b1 = b2 = · · · = bn.

Definition. A real function f defined on an interval I is convex if f(αx+βy) ≤
αf(x) + βf(y). for all x, y ∈ I and all α, β > 0 such that α + β = 1. A function
f is said to be concave if the opposite inequality holds, i.e., if −f is convex.

Theorem. If f is continuous on an interval I, then f is convex on that interval
if and only if

f

(

x + y

2

)

≤ f(x) + f(y)

2
for all x, y ∈ I.

Theorem. If f is differentiable, then it is convex if and only if the derivative f ′

is nondecreasing. Similarly, differentiable function f is concave if and only if f ′

is nonincreasing.

Theorem. [Jensen’s inequality] If f : I → R is a convex function, then the
inequality

f(α1x1 + · · · + αnxn) ≤ α1f(x1) + · · · + αnf(xn)

holds for all αi ≥ 0, α1 + · · · + αn = 1, and xi ∈ I. For a concave function the
opposite inequality holds.

Theorem. [Muirhead’s inequality] Given x1, x2, . . . , xn ∈ R+ and an n-tuple
a = (a1, · · · , an) of positive real numbers, we define

Ta(x1, . . . , xn) =
∑

ya1

1 . . . yan

n ,

the sum being taken over all permutations y1, . . . , yn of x1, . . . , xn. We say
that an n-tuple a majorizes an n-tuple b if a1 + · · · + an = b1 + · · · + bn and
a1 + · · ·+ ak ≥ b1 + · · ·+ bk for each k = 1, . . . , n− 1. If a nonincreasing n-tuple
a majorizes a nonincreasing n-tuple b, then the following inequality holds:

Ta(x1, . . . , xn) ≥ Tb(x1, . . . , xn).
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Equality occurs if and only if x1 = x2 = · · · = xn.

Theorem. [Schur’s inequality] Using the notation introduced for Muirhead’s
inequality,

Tλ+2µ,0,0(x1, x2, x3) + Tλ,µ,µ(x1, x2, x3) ≥ 2Tλ+µ,µ,0(x1, x2, x3),

where λ, µ ∈ R+. Equality occurs if and only if x1 = x2 = x3 or x1 = x2, x3 = 0
(and in analogous cases).

Groups and Fields

Definition. A group is a nonempty set G equipped with an operation ∗ satis-
fying the following conditions:

(i) a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ G.

(ii) There exists a (unique) additive identity e ∈ G such that e ∗ a = a ∗ e = a
for all a ∈ G.

(iii) For each a ∈ G there exists a (unique) additive inverse a−1 = b ∈ G such
that a ∗ b = b ∗ a = e.

If n ∈ Z, we define an as a ∗ a ∗ · · · ∗ a (n times) if n ≥ 0, and as (a−1)−n

otherwise.

Definition. A group G = (G, ∗) is commutative or abelian if a ∗ b = b ∗ a for all
a, b ∈ G.

Definition. A set A generates a group (G, ∗) if every element of G can be
obtained using powers of the elements of A and the operation ∗. In other
words, if A is the generator of a group G then every element g ∈ G can be
written as ai1

1 ∗ · · · ∗ ain
n , where aj ∈ A and ij ∈ Z for every j = 1, 2, . . . , n.

Definition. The order of a ∈ G is the smallest n ∈ N such that an = e, if it
exists. The order of a group is the number of its elements, if it is finite. Each
element of a finite group has a finite order.

Theorem. [Lagrange’s theorem] In a finite group, the order of an element divides
the order of the group.

Definition. A ring is a nonempty set R equipped with two operations + and ·
such that (R, +) is an abelian group and for any a, b, c ∈ R,

(i) (a · b) · c = a · (b · c);

(ii) (a + b) · c = a · c + b · c and c · (a + b) = c · a + c · b.
A ring is commutative if a · b = b · a for any a, b ∈ R and with identity if there
exists a multiplicative identity i ∈ R such that i · a = a · i = a for all a ∈ R.

Definition. A field is a commutative ring with identity in which every element
a other than the additive identity has a multiplicative inverse a−1 such that
a · a−1 = a−1 · a = i.

Theorem. The following are common examples of groups, rings, and fields:
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Groups: (Zn, +), (Zp \ {0}, ·), (Q, +), (R, +), (R \ {0}, ·).

Rings: (Zn, +, ·), (Z, +, ·), (Z[x], +, ·), (R[x], +, ·).

Fields: (Zp, +, ·), (Q, +, ·), (Q(
√

2), +, ·), (R, +, ·), (C, +, ·).

Analysis

Definition. A sequence {an}∞n=1 has a limit a = limn→∞ an (also denoted by
an → a) if

(∀ε > 0)(∃nε ∈ N)(∀n ≥ nε) |an − a| < ε.

A function f : (a, b) → R has a limit y = limx→c f(x) if

(∀ε > 0)(∃δ > 0)(∀x ∈ (a, b)) 0 < |x − c| < δ ⇒ |f(x) − y| < ε.

Definition. A sequence xn converges to x ∈ R if limn→∞ xn = x. A series
∑∞

n=1 xn converges to s ∈ R if and only if limm→∞

∑m
n=1 xn = s. A sequence

or series that does not converge is said to diverge.

Theorem. A sequence an is convergent if it is monotonic and bounded.

Definition. A function f is continuous on [a, b] if for every x0 ∈ [a, b],
limx→x0

f(x) = f(x0).

Definition. A function f : (a, b) → R is differentiable at a point x0 ∈ (a, b) if
the following limit exists:

f ′(x0) = lim
x→x0

f(x) − f(x0)

x − x0
.

A function is differentiable on (a, b) if it is differentiable at every x0 ∈ (a, b).
The function f ′ is called the derivative of f . We similarly define the second
derivative f ′′ as the derivative of f ′, and so on.

Theorem. A differentiable function is also continuous. If f and g are dif-
ferentiable, then fg, αf + βg (α, β ∈ R), f ◦ g, 1/f (if f 6= 0), f−1 (if
well-defined) are also differentiable. It holds that (αf + βg)′ = αf ′ + βg′,
(fg)′ = f ′g+fg′, (f ◦g)′ = (f ′◦g)·g′, (1/f)′ = −f ′/f2, (f/g)′ = (f ′g−fg′)/g2,
(f−1)′ = 1/(f ′ ◦ f−1).

Theorem. The following are derivatives of some elementary functions (a denotes
a real constant): (xa)′ = axa−1, (ln x)′ = 1/x, (ax)′ = ax ln a, (sin x)′ = cosx,
(cosx)′ = − sinx.

Theorem. [Fermat’s theorem] Let f : [a, b] → R be a differentiable function. The
function f attains its maximum and minimum in this interval. If x0 ∈ (a, b) is
an extremum (i.e., a maximum or minimum), then f ′(x0) = 0.
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Theorem. [Rolle’s theorem] Let f(x) be a continuously differentiable function
defined on [a, b], where a, b ∈ R, a < b, and f(a) = f(b) = 0. Then there exists
c ∈ [a, b] such that f ′(c) = 0.

Definition. Differentiable functions f1, f2, . . . , fk defined on an open subset D
of Rn are independent if there is no nonzero differentiable function F : Rk → R
such that F (f1, . . . , fk) is identically zero on some open subset of D.

Theorem. Functions f1, . . . , fk : D → R are independent if and only if the k×n
matrix [∂fi/∂xj ]i,j is of rank k, i.e. when its k rows are linearly independent at
some point.

Theorem. [Lagrange multipliers] Let D be an open subset of Rn and
f, f1, f2, . . . , fk : D → R independent differentiable functions. Assume that
a point a in D is an extremum of the function f within the set of points in D
such that f1 = f2 = · · · = fn = 0. Then there exist real numbers λ1, . . . , λk

(so-called Lagrange multipliers) such that a is a stationary point of the function
F = f + λ1f1 + · · · + λkfk, i.e., such that all partial derivatives of F at a are
zero.

Definition. Let f be a real function defined on [a, b] and let a = x0 ≤ x1 ≤
· · · ≤ xn = b and ξk ∈ [xk−1, xk]. The sum S =

∑n
k=1(xk − xk−1)f(ξk) is called

a Darboux sum. If I = limδ→0 S exists (where δ = maxk(xk − xk−1)), we say
that f is integrable and I its integral. Every continuous function is integrable
on a finite interval.

Geometry

Triangle Geometry

Definition. The orthocenter of a triangle is the common point of its three
altitudes.

Definition. The circumcenter of a triangle is the center of its circumscribed
circle (i.e. circumcircle). It is the common point of the perpendicular bisectors
of the sides of the triangle.

Definition. The incenter of a triangle is the center of its inscribed circle (i.e.
incircle). It is the common point of the internal bisectors of its angles.

Definition. The centroid of a triangle (median point) is the common point of
its medians.

Theorem. The orthocenter, circumcenter, incenter and centroid are well-defined
(and unique) for every non-degenerate triangle.

Theorem. [Euler’s line] The orthocenter H , centroid G, and circumcircle O of

an arbitrary triangle lie on a line (Euler’s line) and satisfy
−−→
HG = 2

−−→
GO.

Theorem. [The nine-point circle] The feet of the altitudes from A, B, C and the
midpoints of AB, BC, CA, AH , BH , CH lie on a circle (The nine-point circle).
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Theorem. [Feuerbach’s theorem] The nine-point circle of a triangle is tangent
to the incircle and all three excircles of the triangle.

Theorem. Given a triangle △ABC, let △ABC′, △AB′C, and △A′BC be equi-
lateral triangles constructed outwards. Then AA′, BB′, CC′ intersect in one
point, called Torricelli’s point.

Definition. Let ABC be a triangle, P a point, and X, Y , Z respectively the
feet of the perpendiculars from P to BC, AC, AB. Triangle XY Z is called the
pedal triangle of △ABC corresponding to point P .

Theorem. [Simson’s line] The pedal triangle XY Z is degenerate, i.e., X , Y , Z
are collinear, if and only if P lies on the circumcircle of ABC. Points X , Y , Z
are in this case said to lie on Simson’s line.

Theorem. [Carnot’s theorem] The perpendiculars from X, Y, Z to BC, CA, AB
respectively are concurrent if and only if

BX2 − XC2 + CY 2 − Y A2 + AZ2 − ZB2 = 0.

Theorem. [Desargues’s theorem] Let A1B1C1 and A2B2C2 be two triangles.
The lines A1A2, B1B2, C1C2 are concurrent or mutually parallel if and only if
the points A = B1C2 ∩ B2C1, B = C1A2 ∩ A1C2, and C = A1B2 ∩ A2B1 are
collinear.

Vectors in Geometry

Definition. For any two vectors −→a ,
−→
b in space, we define the scalar product

(also known as dot product) of −→a and
−→
b as −→a · −→b = |−→a ||−→b | cosϕ, and the

vector product as −→a × −→
b = −→p , where ϕ = ∠(−→a ,

−→
b ) and −→p is the vector with

|−→p | = |−→a ||−→b || sin ϕ| perpendicular to the plane determined by −→a and
−→
b such

that the triple of vectors −→a ,
−→
b ,−→p is positively oriented (note that if −→a and

−→
b

are collinear, then −→a × −→
b =

−→
0 ). These products are both linear with respect

to both factors. The scalar product is commutative, while the vector product

is anticommutative, i.e. −→a × −→
b = −−→

b × −→a . We also define the mixed vector

product of three vectors −→a ,
−→
b ,−→c as [−→a ,

−→
b ,−→c ] = (−→a ×−→

b ) · −→c .

Remark. Scalar product of vectors −→a and
−→
b is often denoted by 〈−→a ,

−→
b 〉.

Theorem. [Thales’ theorem] Let lines AA′ and BB′ intersect in a point O,

A′ 6= O 6= B′. Then AB ‖ A′B′ ⇔
−−→
OA
−−→
OA′

=
−−→
OB
−−→
OB′

. (Here
−→a
−→
b

denotes the ratio of

two nonzero collinear vectors).

Theorem. [Ceva’s theorem] Let ABC be a triangle and X, Y, Z be points on lines
BC, CA, AB respectively, distinct from A, B, C. Then the lines AX, BY, CZ are
concurrent if and only if

−−→
BX
−−→
XC

·
−−→
CY
−→
Y A

·
−→
AZ
−−→
ZB

= 1, or equivalently,
sin∡BAX

sin∡XAC

sin ∡CBY

sin∡Y BA

sin ∡ACZ

sin ∡ZCB
= 1
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(the last expression being called the trigonometric form of Ceva’s theorem).

Theorem. [Menelaus’s theorem] Using the notation introduced for Ceva’s theo-
rem, points X, Y, Z are collinear if and only if

−−→
BX
−−→
XC

·
−−→
CY
−→
Y A

·
−→
AZ
−−→
ZB

= −1.

Theorem. [Stewart’s theorem] If D is an arbitrary point on the line BC, then

AD2 =

−−→
DC
−−→
BC

BD2 +

−−→
BD
−−→
BC

CD2 −−−→
BD · −−→DC.

Specifically, if D is the midpoint of BC, then 4AD2 = 2AB2 + 2AC2 − BC2.
Barycenters

Definition. A mass point (A, m) is a point A which is assigned a mass m > 0.

Definition. The mass center (barycenter) of the set of mass points (Ai, mi),

i = 1, 2, . . . , n, is the point T such that
∑

i mi
−−→
TAi = 0.

Theorem. [Leibniz’s theorem] Let T be the mass center of the set of mass points
{(Ai, mi) | i = 1, 2, . . . , n} of total mass m = m1 + · · · + mn, and let X be an
arbitrary point. Then

n
∑

i=1

miXA2
i =

n
∑

i=1

miTA2
i + mXT 2.

Specifically, if T is the centroid of △ABC and X an arbitrary point, then

AX2 + BX2 + CX2 = AT 2 + BT 2 + CT 2 + 3XT 2 .

Quadrilaterals

Theorem. A quadrilateral ABCD is cyclic (i.e., there exists a circumcircle of
ABCD) if and only if ∠ACB = ∠ADB and if and only if ∠ADC + ∠ABC =
180◦.

Theorem. [Ptolemy’s theorem] A convex quadrilateral ABCD is cyclic if and
only if

AC · BD = AB · CD + AD · BC.

For an arbitrary quadrilateral ABCD we have Ptolemy’s inequality (see , Geo-
metric Inequalities).

Theorem. [Casey’s theorem] Let k1, k2, k3, k4 be four circles that all touch a
given circle k. Let tij be the length of a segment determined by an external
common tangent of circles ki and kj (i, j ∈ {1, 2, 3, 4}) if both ki and kj touch
k internally, or both touch k externally. Otherwise, tij is set to be the internal
common tangent. Then one of the products t12t34, t13t24, and t14t23 is the sum
of the other two.
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Some of the circles k1, k2, k3, k4 may be degenerate, i.e. of 0 radius and thus
reduced to being points. In particular, for three points A, B, C on a circle k
and a circle k′ touching k at a point on the arc of AC not containing B, we
have AC · b = AB · c + a · BC, where a, b, and c are the lengths of the tangent
segments from points A, B, and C to k′. Ptolemy’s theorem is a special case of
Casey’s theorem when all four circles are degenerate.

Theorem. A convex quadrilateral ABCD is tangent (i.e., there exists an incircle
of ABCD) if and only if

AB + CD = BC + DA.

Theorem. For arbitrary points A, B, C, D in space, AC ⊥ BD if and only if

AB2 + CD2 = BC2 + DA2.

Theorem. [Newton’s theorem] Let ABCD be a quadrilateral, AD ∩ BC = E,
and AB∩DC = F (such points A, B, C, D, E, F form a complete quadrilateral).
Then the midpoints of AC, BD, and EF are collinear. If ABCD is tangent,
then the incenter also lies on this line.

Theorem. [Brocard’s theorem] Let ABCD be a quadrilateral inscribed in a
circle with center O, and let P = AB ∩ CD, Q = AD ∩ BC, R = AC ∩ BD.
Then O is the orthocenter of △PQR.

Circle Geometry

Theorem. [Pascal’s theorem] If A1, A2, A3, B1, B2, B3 are distinct points on a
conic γ (e.g., circle), then points X1 = A2B3 ∩ A3B2, X2 = A1B3 ∩ A3B1, and
X3 = A1B2∩A2B1 are collinear. The special result when γ consists of two lines
is called Pappus’s theorem.

Theorem. [Brianchon’s theorem] Let ABCDEF be an arbitrary convex hexagon
circumscribed about a conic (e.g., circle). Then AD, BE and CF meet in a
point.

Theorem. [The butterfly theorem] Let AB be a segment of circle k and C
its midpoint. Let p and q be two different lines through C that, respectively,
intersect k on one side of AB in P and Q and on the other in P ′ and Q′. Let
E and F respectively be the intersections of PQ′ and P ′Q with AB. Then it
follows that CE = CF .

Definition. The power of a point X with respect to a circle k(O, r) is defined
by P(X) = OX2 − r2. For an arbitrary line l through X that intersects k at A

and B (A = B when l is a tangent), it follows that P(X) =
−−→
XA · −−→XB.

Definition. The radical axis of two circles is the locus of points that have equal
powers with respect to both circles. The radical axis of circles k1(O1, r1) and
k2(O2, r2) is a line perpendicular to O1O2. The radical axes of three distinct
circles are concurrent or mutually parallel. If concurrent, the intersection of the
three axes is called the radical center.
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Definition. The pole of a line l 6∋ O with respect to a circle k(O, r) is a point
A on the other side of l from O such that OA ⊥ l and d(O, l) · OA = r2. In
particular, if l intersects k in two points, its pole will be the intersection of the
tangents to k at these two points.

Definition. The polar of the point A from the previous definition is the line l. In
particular, if A is a point outside k and AM , AN are tangents to k (M, N ∈ k),
then MN is the polar of A.
Poles and polares are generally defined in a similar way with respect to arbitrary
non-degenerate conics.

Theorem. If A belongs to a polar of B, then B belongs to a polar of A.
Inversion

Definition. An inversion of the plane π around the circle k(O, r) (which belongs
to π), is a transformation of the set π\{O} onto itself such that every point P is
transformed into a point P ′ on (OP such that OP · OP ′ = r2. In the following
statements we implicitly assume exclusion of O.

Theorem. The fixed points of the inversion are on the circle k. The inside of k
is transformed into the outside and vice versa.

Theorem. If A, B transform into A′, B′ after an inversion, then ∠OAB =
∠OB′A′, and also ABB′A′ is cyclic and perpendicular to k. A circle perpendic-
ular to k transforms into itself. Inversion preserves angles between continuous
curves (which includes lines and circles).

Theorem. An inversion transforms lines not containing O into circles containing
O, lines containing O into themselves, circles not containing O into circles not
containing O, circles containing O into lines not containing O.

Geometric Inequalities

Theorem. [The triangle inequality] For any three points A, B, C in a plane
AB + BC ≥ AC. Equality occurs when A, B, C are collinear and B(A, B, C).

Theorem. [Ptolemy’s inequality] For any four points A, B, C, D,

AC · BD ≤ AB · CD + AD · BC.

Theorem. [The parallelogram inequality] For any four points A, B, C, D,

AB2 + BC2 + CD2 + DA2 ≥ AC2 + BD2.

Equality occurs if and only if ABCD is a parallelogram.

Theorem. For a given triangle △ABC the point X for which AX +BX +CX is
minimal is Toricelli’s point when all angles of △ABC are less than or equal to
120◦, and is the vertex of the obtuse angle otherwise. The point X2 for which
AX2

2 + BX2
2 + CX2

2 is minimal is the centroid (see Leibniz’s theorem).
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Theorem. [The Erdős–Mordell inequality] Let P be a point in the interior of
△ABC and X, Y, Z projections of P onto BC, AC, AB, respectively. Then

PA + PB + PC ≥ 2(PX + PY + PZ).

Equality holds if and only if △ABC is equilateral and P is its center.
Trigonometry

Definition. The trigonometric circle is the unit circle centered at the origin
O of a coordinate plane. Let A be the point (1, 0) and P (x, y) be a point on
the trigonometric circle such that ∡AOP = α. We define sinα = y, cosα = x,
tanα = y/x, and cotα = x/y.

Theorem. The functions sin and cos are periodic with period 2π. The functions
tan and cot are periodic with period π. The following simple identities hold:
sin2 x + cos2 x = 1, sin 0 = sinπ = 0, sin(−x) = − sinx, cos(−x) = cosx,
sin(π/2) = 1, sin(π/4) = 1/

√
2, sin(π/6) = 1/2, cosx = sin(π/2 − x). From

these identities other identities can be easily derived.

Theorem. Additive formulas for trigonometric functions:

sin(α ± β) = sin α cosβ ± cosα sin β, tan(α ± β) = tan α±tan β
1∓tan α tan β ,

cos(α ± β) = cosα cosβ ∓ sin α sin β, cot(α ± β) = cot α cot β∓1
cot α±cot β .

Theorem. Formulas for trigonometric functions of 2x and 3x:

sin 2x = 2 sinx cosx, sin 3x = 3 sinx − 4 sin3 x,
cos 2x = 2 cos2 x − 1, cos 3x = 4 cos3 x − 3 cosx,

tan 2x = 2 tan x
1−tan2 x , tan 3x = 3 tan x−tan3 x

1−3 tan2 x .

Theorem. For any x ∈ R, sinx = 2t
1+t2 and cosx = 1−t2

1+t2 , where t = tan x
2 .

Theorem. Transformations from product to sum:

2 cosα cosβ = cos(α + β) + cos(α − β),
2 sinα cosβ = sin(α + β) + sin(α − β),
2 sinα sin β = cos(α − β) − cos(α + β).

Theorem. The angles α, β, γ of a triangle satisfy

cos2 α + cos2 β + cos2 γ + 2 cosα cosβ cos γ = 1,
tanα + tanβ + tan γ = tanα tan β tan γ.

Theorem. [De Moivre’s formula] If i2 = −1, then

(cosx + i sinx)
n

= cosnx + i sin nx.
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Formulas in Geometry

Theorem. [Heron’s formula] The area of a triangle ABC with sides a, b, c and
semiperimeter s is given by

S =
√

s(s − a)(s − b)(s − c) =
1

4

√

2a2b2 + 2a2c2 + 2b2c2 − a4 − b4 − c4.

Theorem. [The law of sines] The sides a, b, c and angles α, β, γ of a triangle
ABC satisfy

a

sin α
=

b

sin β
=

c

sin γ
= 2R,

where R is the circumradius of △ABC.

Theorem. [The law of cosines] The sides and angles of △ABC satisfy

c2 = a2 + b2 − 2ab cosγ.

Theorem. The circumradius R and inradius r of a triangle ABC satisfy R = abc
4S

and r = 2S
a+b+c = R(cosα + cosβ + cos γ − 1). If x, y, z denote the distances of

the circumcenter in an acute triangle to the sides, then x + y + z = R + r.

Theorem. [Euler’s formula] If O and I are the circumcenter and incenter of
△ABC, then OI2 = R(R−2r), where R and r are respectively the circumradius
and the inradius of △ABC. Consequently, R ≥ 2r.

Theorem. The area S of a quadrilateral ABCD with sides a, b, c, d, semiperime-
ter p, and angles α, γ at vertices A, C respectively is given by

S =

√

(p − a)(p − b)(p − c)(p − d) − abcd cos2
α + γ

2
.

If ABCD is a cyclic quadrilateral, the above formula reduces to

S =
√

(p − a)(p − b)(p − c)(p − d).

Theorem. [Euler’s theorem for pedal triangles] Let X, Y, Z be the feet of the
perpendiculars from a point P to the sides of a triangle ABC. Let O denote
the circumcenter and R the circumradius of △ABC. Then

SXY Z =
1

4

∣

∣

∣

∣

1 − OP 2

R2

∣

∣

∣

∣

SABC .

Moreover, SXY Z = 0 if and only if P lies on the circumcircle of △ABC (see
Simson’s line).

Theorem. If −→a = (a1, a2, a3),
−→
b = (b1, b2, b3),

−→c = (c1, c2, c3) are three vectors
in coordinate space, then

−→a · −→b = a1b1 + a2b2 + a3b3,
−→a ×−→

b = (a1b2 − a2b1, a2b3 − a3b2, a3b1 − a1b3),
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[−→a ,
−→
b ,−→c ] =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Theorem. The area of a triangle ABC and the volume of a tetrahedron ABCD

are equal to |−−→AB ×−→
AC| and

∣

∣

∣

[−−→
AB,

−→
AC,

−−→
AD

]
∣

∣

∣
, respectively.

Theorem. [Cavalieri’s principle] If the sections of two solids by the same plane
always have equal area, then the volumes of the two solids are equal.

Number Theory

Divisibility and Congruences

Definition. The greatest common divisor (a, b) = gcd(a, b) of a, b ∈ N is
the largest positive integer that divides both a and b. Positive integers a and
b are coprime or relatively prime if (a, b) = 1. The least common multiple
[a, b] = lcm(a, b) of a, b ∈ N is the smallest positive integer that is divisible by
both a and b. It holds that [a, b](a, b) = ab. The above concepts are easily
generalized to more than two numbers; i.e., we also define (a1, a2, . . . , an) and
[a1, a2, . . . , an].

Theorem. [Euclid’s algorithm] Since (a, b) = (|a − b|, a) = (|a − b|, b) it follows
that starting from positive integers a and b one eventually obtains (a, b) by
repeatedly replacing a and b with |a − b| and min{a, b} until the two numbers
are equal. The algorithm can be generalized to more than two numbers.

Theorem. [Corollary to Euclid’s algorithm] For each a, b ∈ N there exist x, y ∈ Z
such that ax + by = (a, b). The number (a, b) is the smallest positive number
for which such x and y can be found.

Theorem. [Second corollary to Euclid’s algorithm] For a, m, n ∈ N and a > 1 it
follows that (am − 1, an − 1) = a(m,n) − 1.

Theorem. [Fundamental theorem of arithmetic] Every positive integer can be
uniquely represented as a product of primes, up to their order.

Theorem. The fundamental theorem of arithmetic also holds in some other
rings, such as Z[i] = {a + bi | a, b ∈ Z}, Z[

√
2], Z[

√
−2], Z[ω] (where ω is a

complex third root of 1). In these cases, the factorization into primes is unique
up to the order and divisors of 1.

Definition. Integers a, b are congruent modulo n ∈ N if n | a− b. We then write
a ≡ b (mod n).

Theorem. [Chinese remainder theorem] If m1, m2, . . . , mk are positive inte-
gers pairwise relatively prime and a1, . . . , ak, c1, . . . , ck are integers such that
(ai, mi) = 1 (i = 1, . . . , n), then the system of congruences

aix ≡ ci (mod mi), i = 1, 2, . . . , n ,

has a unique solution modulo m1m2 · · ·mk.
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www.imo.org.yu



Exponential Congruences

Theorem. [Wilson’s theorem] If p is a prime, then p | (p − 1)! + 1.

Theorem. [Fermat’s (little) theorem] Let p be a prime number and a be an
integer with (a, p) = 1. Then ap−1 ≡ 1 (mod p). This theorem is a special case
of Euler’s theorem.

Definition. Euler’s function ϕ(n) is defined for n ∈ N as the number of positive
integers less than n and coprime to n. It holds that

ϕ(n) = n

(

1 − 1

p1

)

· · ·
(

1 − 1

pk

)

,

where n = pα1

1 · · · pαk

k is the factorization of n into primes.

Theorem. [Euler’s theorem] Let n be a natural number and a be an integer with
(a, n) = 1. Then aϕ(n) ≡ 1 (mod n).

Theorem. [Existence of primitive roots] Let p be a prime. There exists
g ∈ {1, 2, . . . , p − 1} (called a primitive root modulo p) such that the set
{1, g, g2, . . . , gp−2} is equal to {1, 2, . . . , p − 1} modulo p.

Definition. Let p be a prime and α be a nonnegative integer. We say that pα

is the exact power of p that divides an integer a (and α the exact exponent) if
pα | a and pα+1 ∤ a.

Theorem. Let a, n be positive integers and p be an odd prime. If pα (α ∈ N) is
the exact power of p that divides a−1, then for any integer β ≥ 0, pα+β | an−1
if and only if pβ | n.

A similar statement holds for p = 2. If 2α (α ∈ N) is the exact power of
2 that divides a2 − 1, then for any integer β ≥ 0, 2α+β | an − 1 if and only if
2β+1 | n.

Quadratic Diophantine Equations

Theorem. The solutions of a2 + b2 = c2 in integers are given by a = t(m2 −n2),
b = 2tmn, c = t(m2 + n2) (provided that b is even), where t, m, n ∈ Z. The
triples (a, b, c) are called Pythagorean (or primitive Pythagorean if gcd(a, b, c) =
1).

Definition. Given D ∈ N that is not a perfect square, a Pell’s equation is an
equation of the form x2 − Dy2 = 1, where x, y ∈ Z.

Theorem. If (x0, y0) is the least (nontrivial) solution in N of the Pell’s equation
x2 − Dy2 = 1, then all the integer solutions (x, y) are given by x + y

√
D =

±(x0 + y0

√
D)n, where n ∈ Z.

Definition. An integer a is a quadratic residue modulo a prime p if there exists
x ∈ Z such that x2 ≡ a (mod p). Otherwise, a is a quadratic nonresidue modulo
p.
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Definition. Legendre’s symbol for an integer a and a prime p is defined by

(

a

p

)

=







1 if a is a quadratic residue mod p and p ∤ a;
0 if p | a;
−1 otherwise.

Clearly
(

a
p

)

=
(

a+p
p

)

and
(

a2

p

)

= 1 if p ∤ a. Legendre’s symbol is multiplica-

tive, i.e.,
(

a
p

)(

b
p

)

=
(

ab
p

)

.

Theorem. [Euler’s criterion] For each odd prime p and integer a not divisible

by p, a
p−1

2 ≡
(

a
p

)

(mod p).

Theorem. For a prime p > 3,
(

−1
p

)

,
(

2
p

)

and
(

−3
p

)

are equal to 1 if and only

if p ≡ 1 (mod 4), p ≡ ±1 (mod 8) and p ≡ 1 (mod 6), respectively.

Theorem. [Gauss’s Reciprocity law] For any two distinct odd primes p and q,

(

p

q

)(

q

p

)

= (−1)
p−1

2
·

q−1

2 .

Definition. Jacobi’s symbol for an integer a and an odd positive integer b is
defined as

(a

b

)

=

(

a

p1

)α1

· · ·
(

a

pk

)αk

,

where b = pα1

1 · · · pαk

k is the factorization of b into primes.

Theorem. If
(

a
b

)

= −1, then a is a quadratic nonresidue modulo b, but the
converse is false. All the above identities for Legendre symbols except Euler’s
criterion remain true for Jacobi symbols.

Farey Sequences

Definition. For any positive integer n, the Farey sequence Fn is the sequence of
rational numbers a/b with 0 ≤ a ≤ b ≤ n and (a, b) = 1 arranged in increasing
order. For instance, F3 = { 0

1 , 1
3 , 1

2 , 2
3 , 1

1}.
Theorem. If p1/q1, p2/q2, and p3/q3 are three successive terms in a Farey
sequence, then

p2q1 − p1q2 = 1 and
p1 + p3

q1 + q3
=

p2

q2
.

Combinatorics

Counting of Objects

Many combinatorial problems involving the counting of objects satisfying a
given set of properties can be properly reduced to an application of one of the
following concepts.
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Definition. A variation of order n over k is a 1 to 1 mapping of {1, 2, . . . , k}
into {1, 2, . . . , n}. For a given n and k, where n ≥ k, the number of different
variations is V k

n = n!
(n−k)! .

Definition. A variation with repetition of order n over k is an arbitrary mapping
of {1, 2, . . . , k} into {1, 2, . . . , n}. For a given n and k the number of different

variations with repetition is V
k

n = kn.

Definition. A permutation of order n is a bijection of {1, 2, . . . , n} into itself
(a special case of variation for k = n). For a given n the number of different
permutations is Pn = n!.

Definition. A combination of order n over k is a k-element subset of
{1, 2, . . . , n}. For a given n and k the number of different combinations is
Ck

n =
(

n
k

)

.

Definition. A permutation with repetition of order n is a bijection of
{1, 2, . . . , n} into a multiset of n elements. A multiset is defined to be a set
in which certain elements are deemed mutually indistinguishable (for example,
as in {1, 1, 2, 3}).

If {1, 2 . . . , s} denotes a set of different elements in the multiset and the ele-
ment i appears αi times in the multiset, then number of different permutations
with repetition is Pn,α1,...,αs

= n!
α1!·α2!···αs! . A combination is a special case of

permutation with repetition for a multiset with two different elements.

Theorem. [The pigeonhole principle] If a set of nk + 1 different elements is
partitioned into n mutually disjoint subsets, then at least one subset will contain
at least k + 1 elements.

Theorem. [The inclusion–exclusion principle] Let S1, S2, . . . , Sn be a family of
subsets of the set S. The number of elements of S contained in none of the
subsets is given by the formula

|S\(S1 ∪ · · · ∪ Sn)| = |S| −
n
∑

k=1

∑

1≤i1<···<ik≤n

(−1)k|Si1 ∩ · · · ∩ Sik
| .

Graph Theory

Definition. A graph G = (V, E) is a set of objects, i.e., vertices, V paired with
the multiset E of some pairs of elements of V , i.e., edges. When (x, y) ∈ E,
for x, y ∈ V , the vertices x and y are said to be connected by an edge; i.e., the
vertices are the endpoints of the edge.

A graph for which the multiset E reduces to a proper set (i.e., the vertices
are connected by at most one edge) and for which no vertex is connected to
itself is called a proper graph.

A finite graph is one in which |E| and |V | are finite.

Definition. An oriented graph is one in which the pairs in E are ordered.

Definition. A proper graph Kn containing n vertices and in which each pair
of vertices is connected is called a complete graph.
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Definition. A k-partite graph (bipartite for k = 2) Ki1,i2,...,ik
is a graph whose

set of vertices V can be partitioned into k non-empty disjoint subsets of cardi-
nalities i1, i2, . . . , ik such that each vertex x in a subset W of V is connected
only with the vertices not in W .

Definition. The degree d(x) of a vertex x is the number of times x is the
endpoint of an edge (thus, self-connecting edges are counted twice). An isolated
vertex is one with the degree 0.

Theorem. For a graph G = (V, E) the following identity holds:

∑

x∈V

d(x) = 2|E|.

As a consequence, the number of vertices of odd degree is even.

Definition. A trajectory (path) of a graph is a finite sequence of vertices, each
connected to the previous one. The length of a trajectory is the number of
edges through which it passes. A circuit is a path that ends in the starting
vertex. A cycle is a circuit in which no vertex appears more than once (except
the initial/final vertex).

A graph is connected if there exists a trajectory between any two vertices.

Definition. A subgraph G′ = (V ′, E′) of a graph G = (V, E) is a graph such
that V ′ ⊆ V and E′ contains exactly the edges of E connecting points in V ′. A
connected component of a graph is a connected subgraph such that no vertex of
the component is connected with any vertex outside of the component.

Definition. A tree is a connected graph that contains no cycles.

Theorem. A tree with n vertices has exactly n−1 edges and at least two vertices
of degree 1.

Definition. An Euler path is a path in which each edge appears exactly once.
Likewise, an Euler circuit is an Euler path that is also a circuit.

Theorem. The following conditions are necessary and sufficient for a finite con-
nected graph G to have an Euler path:

• If each vertex has even degree, then the graph contains an Euler circuit.

• If all vertices except two have even degree, then the graph contains an
Euler path that is not a circuit (it starts and ends in the two odd vertices).

Definition. A Hamilton circuit is a circuit that contains each vertex of G
exactly once (trivially, it is also a cycle).

A simple rule to determine whether a graph contains a Hamilton circuit has
not yet been discovered.

Theorem. Let G be a graph with n vertices. If the sum of the degrees of any two
nonadjacent vertices in G is greater than n, then G has a Hamiltonian circuit.
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Theorem. [Ramsey’s theorem] Let r ≥ 1 and q1, q2, . . . , qs ≥ r. There exists a
minimal positive integer N(q1, q2, . . . , qs; r) such that for n ≥ N , if all subgraphs
Kr of Kn are partitioned into s different sets, labeled A1, A2 . . . , As, then for
some i there exists a complete subgraph Kqi

whose subgraphs Kr all belong
to Ai. For r = 2 this corresponds to coloring the edges of Kn with s different
colors and looking for i monochromatically colored subgraphs Kqi

.

Theorem. N(p, q; r) ≤ N(N(p−1, q; r), N(p, q−1; r); r−1)+1, and in particular,
N(p, q; 2) ≤ N(p − 1, q; 2) + N(p, q − 1; 2).

The following values of N are known: N(p, q; 1) = p + q − 1, N(2, p; 2) = p,
N(3, 3; 2) = 6, N(3, 4; 2) = 9, N(3, 5; 2) = 14, N(3, 6; 2) = 18, N(3, 7; 2) = 23,
N(3, 8; 2) = 28, N(3, 9; 2) = 36, N(4, 4; 2) = 18, N(4, 5; 2) = 25.

Theorem. [Turán’s theorem] If a simple graph on n = t(p − 1) + r vertices has

more than f(n, p) edges, where f(n, p) = (p−2)n2−r(p−1−r)
2(p−1) , then it contains Kp

as a subgraph. The graph containing f(n, p) vertices that does not contain Kp

is the complete multipartite graph with r subsets of size t + 1 and p − 1 − r
subsets of size t.

Definition. A planar graph is one that can be embedded in a plane such that its
vertices are represented by points and its edges by lines (not necessarily straight)
connecting the vertices such that the edges do not intersect each other.

Theorem. A planar graph with n vertices has at most 3n − 6 edges.

Theorem. [Kuratowski’s theorem] Graphs K5 and K3,3 are not planar. Every
nonplanar graph contains a subgraph which can be obtained from one of these
two graphs by a subdivison of its edges.

Theorem. [Euler’s formula] For a given convex polyhedron let E be the number
of its edges, F the number of faces, and V the number of vertices. Then E+2 =
F + V . The same formula holds for a planar graph (F is in this case equal to
the number of planar regions).
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