Flanders Mathematical Olympiad 1991

Final Round

- 1. Show that the number $n = \overline{111...11}$, consisting of 1991 digits 1, is not prime.
- 2. (a) Show that for every $n \in \mathbb{N}_0$ there is exactly one positive real number *x* such that $x^n + x^{n+1} = 1$. Denote this *x* by x_n .
 - (b) Find $\lim_{n\to+\infty} x_n$.
- 3. An equilateral triangle *ABC* and a point *X* on side *AB* different from *A* and *B* are given. Consider unique points *Y* and *Z* on sides *BC* and *CA*, respectively, such that $\triangle XYZ$ is equilateral. Assuming that the area of $\triangle XYZ$ is half the area of $\triangle ABC$, find the ratios $\frac{AX}{XB}$, $\frac{BY}{YC}$, $\frac{CZ}{ZA}$.
- 4. A word of length *n* consisting of digits 0 and 1 is called a *bit-string* of length *n* (for example, 000 and 01101 are bit-strings of length 3 and 5.) Define the sequence s_1, s_2, \ldots of bit-strings of length $n \ge 2$ as follows:
 - (1) s_1 is the bit-string 00...01, consisting of n 1 zeros and a 1;
 - (2) s_{i+1} is obtained as follows:
 - 1° Remove the leftmost digit of s_i . This results in a bit-string *t* of length n-1.
 - 2° Examine whether the bit-string t1 (i.e. t followed by a 1) has already occured in $\{s_1, s_2, \ldots, s_i\}$. If it has not, take $s_{i+1} = t1$; otherwise, take $s_{i+1} = t0$.

For example, for n = 3 we have $s_1 = 001 \rightarrow s_2 = 011 \rightarrow s_3 = 111 \rightarrow s_4 = 110 \rightarrow s_5 = 101 \rightarrow s_6 = 010 \rightarrow s_7 = 100 \rightarrow s_8 = 000 \rightarrow ...)$

Prove that if $N = 2^n$, then the bit-strings s_1, s_2, \ldots, s_N (all of length *n*) are all different.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

1