
Flanders Mathematical Olympiad 2001

Final Round

1. Prove that for every natural numbern > 1, (n−1)2 dividesnn−1−1.

2. Two straight lines through vertices di-
vide a triangle into four pieces. The ar-
eas of of three of the pieces are shown
on the picture. Determine the area of
the fourth piece (denoted by ”?”).
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3. A regular 2001-gon is inscribed in a circle. Consider a regular 667-gon whose
vertices are at vertices of the 2001-gon. Prove that the areaof the part of the
2001-gon lying outside the 667-gon equals
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for some positive integerk, and determinek.

4. A student is solving quadratic equation as follows. He starts with a first quadratic
equationx2 + ax + b = 0 with a andb nonzero and finds its solutionsp,q. If p
andq are real withp≤ q, he forms the second quadratic equationx2+ px+q = 0.
He continues this process as long as possible. Prove that he will stop at latest at
the fifth equation.
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