Flanders Mathematical Olympiad 2000

Final Round

- 1. A natural number *n* consists of 7 different digits and is divisible by each of these digits. Which digits cannot occur in *n*?
- 2. Two triangles have the property that the sides of the second triangle are congruent to the medians of the first one. Find the ratio of the areas of these triangles.
- 3. Let p_n be the *n*-th prime $(p_1 = 2)$. The sequence (f_n) is defined by $f_1 = 1, f_2 = 2$, and for each $j \ge 2$:
 - (i) if $f_j = kp_n$ and $k < p_n$, then $f_{j+1} = (k+1)p_n$;
 - (ii) if $f_j = p_n^2$ then $f_{j+1} = p_{n+1}$.
 - (a) Prove that all terms of this sequence are distinct.
 - (b) Find the position of the last term with less than three digits.
 - (c) Determine the positive integers not occurring in the sequence.
 - (d) How many numbers with less than three digits do occur in the sequence?
- 4. Find all *x* with $0 \le x < 2\pi$ satisfying $\sin x < \cos x < \tan x < \cot x$.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com