17-th Balkan Mathematical Olympiad

Chişinău, Moldova - May 5, 2000

1. [BMO 1997#4] Determine all functions $f : \mathbb{R} \to \mathbb{R}$ that satisfy

$$f(xf(x) + f(y)) = f(x)^2 + y$$
 for all x, y . (Albania)

- 2. Let *ABC* be a scalene triangle and *E* be a point on the median *AD*. Point *F* is the orthogonal projection of *E* onto *BC*. Let *M* be a point on the segment *EF*, and *N*, *P* be the orthogonal projections of *M* onto *AC* and *AB* respectively. Prove that the bisectors of the angles *PMN* and *PEN* are parallel.
- 3. Find the maximal number of rectangles $1 \times 10\sqrt{2}$ that can be cut off from a rectangle 50×90 by using cuts parallel to the edges of the big rectangle.

(Yugoslavia)

- 4. A positive integer is a *power* if it is of the form t^s for some integers $t, s \ge 2$. Prove that for any natural number n there exists a set A of positive integers with the following properties:
 - (i) A has n elements;
 - (ii) Every element of A is a power;
 - (iii) For any $2 \le k \le n$ and any $r_1, \dots, r_k \in A$, $\frac{r_1 + \dots + r_k}{k}$ is a power.

