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1. Consider the finite sequence
[
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, k = 1,2, . . . ,1997. How many distinct terms

are there in this sequence? (Greece)

2. Letn ≥ 2 be an integer, and let 0< a1 < a2 < · · ·< a2n+1 be real numbers. Prove
the inequality
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a1−a2+ a3−·· ·+ a2n+1.

(Romania)

3. LetS denote the set of points inside or on the border of a triangleABC, without
a fixed pointT inside the triangle. Show thatS can be partitioned into disjoint
closed segemnts. (Yugoslavia)

4. Prove that the equationy2
= x5−4 has no integer solutions. (Bulgaria)
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