14-th Balkan Mathematical Olympiad

Kalabaka, Greece - April 30, 1997

1. Suppose that O is a point inside a convex quadrilateral ABCD such that

$$OA^2 + OB^2 + OC^2 + OD^2 = 2S_{ABCD}$$

where S_{ABCD} denotes the area of ABCD. Prove that ABCD is a square and O its center. (Yugoslavia)

- 2. Let $\mathscr{A} = \{A_1, A_2, \dots, A_k\}$ be a collection of subsets of an n-element set S. If for any two elements $x, y \in S$ there is a subset $A_i \in \mathscr{A}$ containing exactly one of the two elements x, y, prove that $2^k \ge n$. (Yugoslavia)
- 3. Circles C_1 and C_2 touch each other externally at D, and touch a circle Γ internally at B and C, respectively. Let A be an intersection point of Γ and the common tangent to C_1 and C_2 at D. Lines AB and AC meet C_1 and C_2 again at K and C_3 , respectively, and the line BC meets C_1 again at C_3 again at C_4 . Show that the lines C_4 and C_5 are concurrent. (*Greece*)
- 4. Determine all functions $f : \mathbb{R} \to \mathbb{R}$ that satisfy

$$f(xf(x) + f(y)) = f(x)^2 + y$$
 for all x, y . (Bulgaria)

