13-th Balkan Mathematical Olympiad

Bacau, Romania - April 30, 1996

1. Let *O* be the circumcenter and *G* be the centroid of a triangle *ABC*. If *R* and *r* are the circumcenter and incenter of the triangle, respectively, prove that

$$OG \le \sqrt{R(R-2r)}$$
. (Greece)

- 2. Let p > 5 be a prime. Consider $X = \{p n^2 \mid n \in \mathbb{N}\}$. Prove that there are two distinct elements $x, y \in X$ such that $x \neq 1$ and $x \mid y$. (*Albania*)
- 3. In a convex pentagon *ABCDE*, *M*,*N*,*P*,*Q*,*R* are the midpoints of the sides *AB*,*BC*,*CD*,*DE*,*EA*, respectively. If the segments *AP*,*BQ*,*CR*, *DM* pass through a single point, prove that *EN* contains that point as well. (*Yugoslavia*)
- 4. Show that there exists a subset *A* of the set $\{1, 2, \dots, 2^{1996} 1\}$ with the following properties:
 - (i) $1 \in A$ and $2^{1996} 1 \in A$;
 - (ii) Every element of $A \setminus \{1\}$ is the sum of two (possibly equal) elements of A;
 - (iii) A contains at most 2012 elements. (Romania)