12-th Balkan Mathematical Olympiad

Plovdiv, Bulgaria - May 9, 1995

1. Define $x * y = \frac{x+y}{1+xy}$. Evaluate $(\dots(((2*3)*4)*5)*\dots)*1995$.

(FYR Macedonia)

2. Circles $c_1(O_1, r_1)$ and $c_2(O_2, r_2)$, $r_2 > r_1$, intersect at A and B so that $\angle O_1AO_2 = 90^\circ$. The line O_1O_2 meets c_1 at C and D, and c_2 at E and F (in the order C - E - D - F). The line BE meets c_1 at E and E are E and E and E are E are E and E are E are E and E are E and E are E are E and E are E are E and E are E and E are E are E and E are E are E are E and E are E and E are E are E and E are E are E and E are E and E are E are E and E are E are E and E are E and E are E are E and E are E are E and E are E and E are E are E and E are E and E are E are E and E are E are E and E are E and E are E and E are E and E are E are E and E are E and E are E and E are E are E and E are E and E are E are E and E are E and E are E are E and E are E are E and E are E are E and E are E are E and E and E are E and E are E and E are E and E are

 $\frac{r_2}{r_1} = \frac{KE}{KM} \cdot \frac{LN}{LD}.$ (Greece)

3. Let a and b be natural numbers with a > b and $2 \mid a + b$. Prove that the solutions of the equation

$$x^{2} - (a^{2} - a + 1)(x - b^{2} - 1) - (b^{2} + 1)^{2} = 0$$

are natural numbers, none of which is a perfect square.

(Albania)

4. Let n be a natural number and S be the set of points (x,y) with $x,y \in \{1,2,\ldots,n\}$. Let T be the set of all squares with the verticesw in the set S. We denote by a_k $(k \ge 0)$ the number of (unordered) pairs of points for which there are exactly k squares in T having these two points as vertices. Show that $a_0 = a_2 + 2a_3$. (Yugoslavia)

