8-th Balkan Mathematical Olympiad

Constanța, Romania - May 13-18, 1991

- 1. Let M be a point on the arc AB not containing C of the circumcircle of an acute-angled triangle ABC, and let O be the circumcenter. The perpendicular from M to OA intersects AB at K and AC at L. The perpendicular from M to OB intersects AB at N and BC at P. If KL = MN, express $\angle MLP$ in terms of the angles of $\triangle ABC$.
- 2. Prove that there are infinitely many pairwise non-congruent triangles T such that:
 - (i) The sides a, b, c of T are coprime positive integers;
 - (ii) The area of T is an integer;
 - (iii) None of the altitudes of *T* is an integer.
- 3. A regular hexagon of area H is inscribed in a convex polygon of area P. Prove that $P \le \frac{3}{2}H$. When does equality occur? (Bulgaria)
- 4. Prove that there is no bijection $f:\{1,2,\ldots\} \to \{0,1,2,\ldots\}$ such that

$$f(mn) = f(m) + f(n) + 3f(m)f(n)$$
 for all m, n . (Romania)

(Yugoslavia)

