5-th Balkan Mathematical Olympiad

Nicosia, Cyprus - May 1-7, 1988

- 1. Let *CH*,*CL*,*CM* be the altitude, angle bisector, and median of a triangle *ABC*, respectively, where *H*,*L*,*M* are on *AB*. Given that the ratios of the areas of $\triangle HMC$ and $\triangle LMC$ to the area of $\triangle ABC$ are equal to $\frac{1}{4}$ and $1 \frac{\sqrt{3}}{2}$, respectively, determine the angles of $\triangle ABC$. (*Bulgaria*)
- 2. Find all polynomials P(x,y) in two variables such that for all real a,b,c,d,

$$P(a,b)P(c,d) = P(ac+bd,ad+bc).$$
 (Yugoslavia)

3. Show that every tetrahedron $A_1A_2A_3A_4$ can be placed between two parallel planes which are at the distance at most $\frac{1}{2}\sqrt{\frac{P}{3}}$, where

$$P = A_1 A_2^2 + A_1 A_3^2 + A_1 A_4^2 + A_2 A_3^2 + A_2 A_4^2 + A_3 A_4^2.$$
 (Greece)

4. Find all pairs (a_n, a_{n+1}) of consecutive terms of the sequence $a_n = 2^n + 49$ such that $a_n = pq$, $a_{n+1} = rs$, where p, q, r, s are prime numbers with p < q, r < s, and q - p = s - r. (*Romania*)

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

1