20-th Austrian Mathematical Olympiad 1989

Final Round

Beginner Level

- 1. Natural numbers $a \le b \le c \le d$ satisfy a + b + c + d = 30. Find the maximum value of the product P = abcd.
- 2. If *a* and *b* are nonnegative real numbers with $a^2 + b^2 = 4$, show that

$$\frac{ab}{a+b+2} \le \sqrt{2} - 1$$

and determine when equality occurs.

- 3. Let *a* be a real number. Prove that if the equation $x^2 ax + a = 0$ has two real roots x_1 and x_2 , then $x_1^2 + x_2^2 \ge 2(x_1 + x_2)$.
- 4. Prove that for any triangle each exradius is less than four times the circumradius.

Advanced Level

First Day

- 1. Consider the set S_n of all the 2^n numbers of the type $2 \pm \sqrt{2 \pm \sqrt{2 \pm \dots}}$, where number 2 appears n + 1 times.
 - (a) Show that all members of S_n are real.
 - (b) Find the product P_n of the elements of S_n .
- 2. Find all triples (a, b, c) of integers with abc = 1989 and a + b c = 89.
- 3. Show that it is possible to situate eight parallel planes at equal distances such that each plane contains precisely one vertex of a given cube. How many such configurations of planes are there?

Second Day

- 4. We are given a circle k and nonparallel tangents t_1, t_2 at points P_1, P_2 on k, respectively. Lines t_1 and t_2 meet at A_0 . For a point P_3 on the smaller arc P_1P_2 , the tangent t_3 to k at P_3 meets t_1 at A_1 and t_2 and A_2 . How must P_3 be chosen so that the triangle $A_0A_1A_2$ has maximum area?
- 5. Find all real solutions of the system

$$x^{2} + 2yz = x,$$

 $y^{2} + 2zx = y,$
 $z^{2} + 2xy = z.$

1

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com 6. Determine all functions $f : \mathbb{N}_0 \to \mathbb{N}_0$ such that f(f(n)) + f(n) = 2n + 6 for all $n \in \mathbb{N}_0$.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com