40-th Austrian Mathematical Olympiad 2009 Final Round

1. Show that for all positive integer *n* the following inequality holds:

 $3^{n^2} > (n!)^4$.

- 2. For a positive integers n, k we define k-multifactorial of n as $F_k(n) = n \cdot (n-k) \cdot (n-2k) \cdots r$, where r is the reminder when n is divided by k that satisfy $1 \le r \le k$. Determine all non-negative integers n such that $F_{20}(n) + 2009$ is a perfect square.
- 3. There are *n* bus stops placed around the circular lake. Each bus stop is connected by a road to the two adjacent stops (we call a *segment* the entire road between two stops). Determine the number of bus routes that start and end in the fixed bus stop *A*, pass through each bus stop at least once and travel through exactly n + 1 segments.
- 4. Let *D*, *E*, and *F* be respectively the midpoints of the sides *BC*, *CA*, and *AB* of $\triangle ABC$. Let H_a , H_b , H_c be the feet of perpendiculars from *A*, *B*, *C* to the opposite sides, respectively. Let *P*, *Q*, *R* be the midpoints of the H_bH_c , H_cH_a , and H_aH_b respectively. Prove that *PD*, *QE*, and *RF* are concurrent.

First Day

1. If $x, y, k, m \in \mathbb{N}$ let us define:

$$\alpha_m = \underbrace{2^{2^{\dots^2}}}_{m}, \quad A_{km}(x) = \underbrace{2^{2^{\dots^{2^{x^{\alpha_m}}}}}}_{k \text{ twos}}, \quad B_k(y) = \underbrace{4^{4^{4^{\dots^{4^y}}}}_{m \text{ fours}}.$$

Determine all pairs (x, y) of non-negative integers, dependent on k > 0, such that $A_{kk}(x) = B_k(y)$.

2. (a) For positive integers a < b let

$$M(a,b) = \frac{\sum_{k=a}^{b} \sqrt{k^2 + 3k + 3}}{b - a + a}.$$

Calculate [M(a,b)].

(b) Calculate

$$N(a,b) = \frac{\sum_{k=a}^{b} \left\lfloor \sqrt{k^2 + 3k + 3} \right\rfloor}{b - a + 1}$$

1

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com 3. Let *P* be the point in the interior of $\triangle ABC$. Let *D* be the intersection of the lines *AP* and *BC* and let *A'* be the point such that $\overrightarrow{AD} = \overrightarrow{DA'}$. The points *B'* and *C'* are defined in the similar way. Determine all points *P* for which the triangles *A'BC*, *AB'C*, and *ABC'* are congruent to $\triangle ABC$.

Second Day

- 4. Let *a* be a positive integer. Consider the sequence (a_n) defined as $a_0 = a$ and $a_n = a_{n-1} + 40^{n!}$ for n > 0. Prove that the sequence (a_n) has infinitely many numbers divisible by 2009.
- 5. Let n > 1 and for $1 \le k \le n$ let $p_k = p_k(a_1, a_2, ..., a_n)$ be the sum of the products of all possible combinations of *k* of the numbers $a_1, a_2, ..., a_n$. Furthermore let $P = P(a_1, a_2, ..., a_n)$ be the sum of all p_k with odd values of *k* less than or equal to *n*.

How many different values are taken by a_j if all the numbers a_j $(1 \le j \le n)$ and P are prime?

6. The quadrilateral *PQRS* whose vertices are the midpoints of the sides *AB*, *BC*, *CD*, *DA*, respectively of a quadrilateral *ABCD* is called the *midpoint quadrilateral* of *ABCD*.

Determine all circumscribed quadrilaterals whose mid-point quadrilaterals are squares.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

2