22-nd Austrian—Polish Mathematical Competition 1999

Austria

Individual Competition — June 30 — July 1
First Day

1. Find the number of 6-tuplg®\1, Ay, ...,As) of subsets oM = {1,...,n} (not
necessarily different) such that each elemeridéelongs to zero, three, or six

of the subsetdy, ..., As.

2. Find the largest real numb€t and the smallest real numb@y such that for all
real numbers, b, ¢, d, e the following inequalities hold:
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3. Given an integen > 2, find all sustems ofi functionsfy,..., f, : R — R such
that for allx,y € R

f1(x) — 200 f2(y) + faly) = O
fo(x®) — f3(x) fa(y) + fa(y?) = O

Second Day

4. Three linek,|,m are drawn through a poiftinside a triangleABC such thak
meetsAB at A; andAC at Ay # A; andPA; = PA; | meetsBC atB; andBA at
B, # B1 andPB; = PBy; m meetsCA atC; andCB atC, # C; andPC; = PC,.
Prove that the lineg,l,m are uniquely determined by these conditions. Find
point P for which the triangleAA1 Az, BB1B,, CC,C;, have the same area and
show that this point is unique.

5. A sequence of intege(sy,) satisfiesa,, 1 = a3+ 1999 forn=1,2,.... Prove
that there exists at most ondor which a, is a perfect square.

6. Solve in the nonnegative real numbers the system of emsati

X2+ XnXn-1+Xt ;=1 forn=1,2,...,1999
Xo = X1999
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Team competition — July 2

7. Find all pairs(x,y) of positive integers such that

Y — yy—x.

8. LetP, Q,Rbe points on the same side of a lipen the plane. LeM andN be the
feet of the perpendiculars fromandQ to g respectively. Poin§ lies between
the linesPM and QN and satisfies and satisfied! = PSandQN = QS. The
perpendicular bisectors & andSN meet in a poinR. If the line RSintersects
the circumcircle of triangl®QR again afT, prove thatSis the midpoint ofRT.

9. A point in the cartesian plane with integer coordinatesaided a lattice point.
Consider the following one player game. A finite set of selddattice points and
finite set of selected segments is called a position in thisegi the following
hold:

(i) The endpoints of each selected segment are latticegoint

(i) Each selected segment is parallel to a coordinate axtis one of the lines
y==£X;

(i) Each selected segment contains exactly five latticatgspall of which are
selected;

(iv) Every two selected segments have at most one commot poin

A move in this game consists of selecting a lattice point arsg@ment such
that the new set of selected lattice points and segmentsasitiqn. Prove or
disprove that there exists an initial position such thagtme can have infinitely
many moves.
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