18-th Austrian–Polish Mathematical Competition 1995

Hollabrunn, Austria

Individual Competition – June 28–29

First Day

1. Determine all real solutions (a_1, \ldots, a_n) of the following system of equations:

$$\begin{cases} a_3 = a_2 + a_1 \\ a_4 = a_3 + a_2 \\ \dots \\ a_n = a_{n-1} + a_{n-2} \\ a_1 = a_n + a_{n-1} \\ a_2 = a_1 + a_n. \end{cases}$$

- 2. Let $X = \{A_1, A_2, A_3, A_4\}$ be a set of four distinct points in the plane. Show that there exists a subset *Y* of *X* with the property that there is no (closed) disk *K* such that $K \cap X = Y$.
- 3. Let $P(x) = x^4 + x^3 + x^2 + x + 1$. Show that there exist two non-constant polynomials Q(y) and R(y) with integer coefficients such that for all

$$Q(y) \cdot R(y) = P(5y^2)$$
 for all y.

Second Day

4. Determine all polynomials P(x) with real coefficients such that

$$P(x)^{2} + P\left(\frac{1}{x}\right)^{2} = P(x^{2})P\left(\frac{1}{x^{2}}\right)$$
 for all x .

- 5. In an equilateral triangle *ABC*, A_1 , B_1 , C_1 are the midpoints of the sides *BC*, *CA*, *AB*, respectively. Three parallel lines p, q and r pass through A_1 , B_1 and C_1 and intersect the lines B_1C_1 , C_1A_1 and A_1B_1 at points A_2 , B_2 , C_2 , respectively. Prove that the lines AA_2 , BB_2 , CC_2 have a common point D which lies on the circumcircle of the triangle *ABC*.
- 6. The Alpine Club organizes four mountain trips for its *n* members. Let E_1 , E_2, E_3, E_4 be the teams participating in these trips. In how many ways can these teams be formed so as to satisfy

1

$$E_1 \cap E_2 \neq \emptyset, \quad E_2 \cap E_3 \neq \emptyset, \quad E_3 \cap E_4 \neq \emptyset?$$

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

Team competition – June 30

- 7. Consider the equation $3y^4 + 4cy^3 + 2xy + 48 = 0$, where *c* is an integer parameter. Determine all values of *c* for which the number of integral solutions (x, y) satisfying the conditions (i) and (ii) is maximal:
 - (i) |x| is a square of an integer;
 - (ii) y is a squarefree number.
- 8. Consider the cube with the vertices at the points $(\pm 1, \pm 1, \pm 1)$. Let V_1, \ldots, V_{95} be arbitrary points within this cube. Denote $v_i = \overrightarrow{OV_i}$, where O = (0,0,0) is the origin. Consider the 2⁹⁵ vectors of the form $s_1v_1 + s_2v_2 + \cdots + s_{95}v_{95}$, where $s_i = \pm 1$.
 - (a) If d = 48, prove that among these vectors there is a vector w = (a, b, c) such that $a^2 + b^2 + c^2 \le 48$.
 - (b) Find a smaller d (the smaller, the better) with the same property.
- 9. Prove that for all positive integers n, m and all real numbers x, y > 0 the following inequality holds:

$$(n-1)(m-1)(x^{n+m}+y^{n+m}) + (n+m-1)(x^ny^m+x^my^n) \ge nm(x^{n+m-1}y+xy^{n+m-1}).$$

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com