12-th Austrian–Polish Mathematical Competition 1989

Eisenstadt, Austria

Individual Competition – June 28–29

First Day

1. Let $a_k, b_k, c_k, k = 1, ..., n$ be positive numbers. Prove the inequality

$$\left(\sum_{k=1}^n a_k b_k c_k\right)^3 \leq \left(\sum_{k=1}^n a_k^3\right) \left(\sum_{k=1}^n b_k^3\right) \left(\sum_{k=1}^n c_k^3\right).$$

- 2. Each point of the plane is colored by one of the two colors. Show that there exists an equilateral triangle with monochromatic vertices.
- 3. Find all natural numbers N (in decimal system) with the following properties:
 - (i) $N = \overline{aabb}$, where \overline{aab} and \overline{abb} are primes;
 - (ii) $N = P_1 P_2 P_3$, where P_k (k = 1, 2, 3) is a prime consisting of k (decimal) digits.

Second Day

- 4. Let 𝒫 be a convex polygon in the plane. Show that there exists a circle containing the entire polygon 𝒫 and having at least three adjacent vertices of 𝒫 on its boundary.
- 5. Let *A* be a vertex of a cube ω circumscribed about a sphere κ of radius 1. We consider lines *g* through *A* containing at least one point of κ . Let *P* be the intersection point of *g* and κ closer to *A*, and *Q* be the second intersection point of *g* and ω . Determine the maximum value of $AP \cdot AQ$ and characterize the lines *g* yielding the maximum.
- 6. A sequence $(a_n)_{n \in \mathbb{N}}$ of squares of nonzero integers is such that for each *n* the difference $a_{n+1} a_n$ is a prime or the square of a prime. Show that all such sequences are finite and determine the longest sequence.

Team competition – June 30

7. Functions f_0, f_1, f_2, \ldots are recursively defined by $f_0(x) = x$ and

 $f_{2k+1}(x) = 3^{f_{2k}(x)}$ and $f_{2k+2} = 2^{f_{2k+1}(x)}, k = 0, 1, 2, \dots$

for all $x \in \mathbb{R}$. Find the greater one of the numbers $f_{10}(1)$ and $f_9(2)$.

1

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com 8. An acute triangle *ABC* is given. For each point *P* of the interior or boundary of $\triangle ABC$, P_a, P_b, P_c denote the orthogonal projections of *P* to *BC*, *CA*, *AB* respectively. Consider

$$f(P) = \frac{AP_c + BP_a + CP_b}{PP_a + PP_b + PP_c}$$

Show that f(P) is constant if and only if *ABC* is an equilateral triangle.

9. Find the smallest odd natural number N such that N^2 is the sum of an odd number (greater than 1) of squares of adjacent positive integers.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com