10-th Austrian–Polish Mathematical Competition 1987

Austria

Individual Competition

First Day

- Three pairwise orthogonal chords of a sphere S are drawn through a given point P inside S. Prove that the sum of the squares of their lengths does not depend on their directions.
- 2. Let *n* be the square of an integer whose each prime divisor has an even number of decimal digits. Consider $P(x) = x^n 1987x$. Show that if *x*, *y* are rational numbers with P(x) = P(y), then x = y.
- 3. A function $f : \mathbb{R} \to \mathbb{R}$ satisfies f(x+1) = f(x) + 1 for all *x*. Given $a \in \mathbb{R}$, define the sequence (x_n) recursively by $x_0 = a$ and $x_{n+1} = f(x_n)$ for $n \ge 0$. Suppose that, for some positive integer *m*, the difference $x_m x_0 = k$ is an integer. Prove that the limit $\lim_{n \to \infty} \frac{x_n}{n}$ exists and determine its value.

Second Day

- 4. Is there a 2000-element subset *A* of $\{1, 2, ..., 3000\}$ with the property that $2x \notin A$ whenever $x \in A$?
- 5. The Euclidian three-dimensional space has been partitioned into three nonempty sets A_1, A_2, A_3 . Show that one of these sets contains, for each d > 0, a pair of points at mutual distance d.
- 6. Let *C* be a unit circle and $n \ge 1$ be a fixed integer. For any set *A* of *n* points P_1, \ldots, P_n on *C* define

$$D(A) = \max_{d} \min_{i} \delta(P_i, d),$$

where *d* goes over all diameters of *C* and $\delta(P, l)$ denotes the distance from point *P* to line *l*. Let \mathscr{F}_n be the family of all such sets *A*. Determine $D_n = \min_{A \in \mathscr{F}_n} D(A)$ and describe all sets *A* with $D(A) = D_n$.

Team competition

7. For any natural number $n = \overline{a_k \dots a_1 a_0}$ $(a_k \neq 0)$ in decimal system write

$$p(n) = a_0 \cdot a_1 \cdots a_k, \quad s(n) = a_0 + a_1 + \cdots + a_k, \quad n^* = \overline{a_0 a_1 \cdots a_k}.$$

Consider $P = \{n \mid n = n^*, \frac{1}{3}p(n) = s(n) - 1\}$ and let *Q* be the set of numbers in *P* with all digits greater than 1.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

1

- (a) Show that *P* is infinite.
- (b) Show that Q is finite.
- (c) Write down all the elements of Q.
- 8. A circle of perimeter 1 has been dissected into four equal arcs B_1, B_2, B_3, B_4 . A closed smooth non-selfintersecting curve *C* has been composed of translates of these arcs (each B_i possibly occurring several times). Prove that the length of *C* is an integer.
- 9. Let *M* be the set of all points (x, y) in the cartesian plane, with integer coordinates satisfying $1 \le x \le 12$ and $1 \le y \le 13$.
 - (a) Prove that every 49-element subset of *M* contains four vertices of a rectangle with sides parallel to the coordinate axes.
 - (b) Give an example of a 48-element subset of *M* without this property.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com