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???, ??

Individual Competition – June ??

First Day

1. Find the least integerk > 16 for which the set{16,17, . . . ,k} contains 15 distinct
integersb1,b2, . . . ,b15 such thatbm is divisible bym for 1≤ m ≤ 15.

2. The sequencea0,a1,a2, . . . is defined byan+1 = a2
n +(an −1)2 for n ≥ 0. Find

all rational numbersa0 for which there exist four distinct indicesk,m, p,q such
thataq −ap = am −ak.

3. In a triangleABC, r is the inradius,rA the radius of the circle touching segments
AB,AC and the incircle of△ABC, andrB andrC are defined analogously. Prove
that

rA + rB + rC ≥ r,

equality holding if and only if△ABC is equilateral.

Second Day

4. Let n ≥ 3 cells be arranged into a circle. Each cell can be occupied by0 or 1.
The following operation is admissible: Choose a any cellC occupied by a 1,
change it into a 0 and simultaneously reverse the entries in the two cells adjacent
to C (so thatx,y become 1− x,1− y). Initially, there is a 1 in one cell and zeros
elsewhere. For which values ofn is it possible to obtain zeros in all cells in a
finite number of admissible steps?

5. LetP(x) = x4+a1x3+a2x2+a3x+a4 be a polynomial with rational coefficients.
Show that ifP(x) has exactly one real rootξ , thenξ is a rational number.

6. The sequences(xn), (yn), (zn) are given by

xn+1 = yn +
1
xn

, yn+1 = zn +
1
yn

, zn+1 = xn +
1
zn

for n ≥ 0,

wherex0,y0,z0 are given positive numbers. Prove that these sequences are un-
bounded.

Team competition– June ??

7. Let a > 3 be an odd integer. Show that for every positive integern the number
a2n

−1 has at leastn +1 distinct prime divisors.
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www.imomath.com



8. The plane has been partitioned intoN regions by three bunches of parallel lines.
What is the least number of lines needed in order thatN > 1981?

9. For a functionf : [0,1] → [0,1] we definef 1 = f and f n+1(x) = f ( f n(x)) for
0≤ x ≤ 1 andn ∈ N. Given that there is ann such that

| f n(x)− f n(y)| < |x− y| for all distinctx,y ∈ [0,1],

prove that there is a uniquex0 ∈ [0,1] such thatf (x0) = x0.

2

The IMO Compendium Group,
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