4-th Austrian–Polish Mathematical Competition 1981

???, ??

Individual Competition – June ??

First Day

- 1. Find the least integer k > 16 for which the set $\{16, 17, \dots, k\}$ contains 15 distinct integers b_1, b_2, \dots, b_{15} such that b_m is divisible by *m* for $1 \le m \le 15$.
- 2. The sequence $a_0, a_1, a_2, ...$ is defined by $a_{n+1} = a_n^2 + (a_n 1)^2$ for $n \ge 0$. Find all rational numbers a_0 for which there exist four distinct indices k, m, p, q such that $a_q a_p = a_m a_k$.
- 3. In a triangle *ABC*, *r* is the inradius, r_A the radius of the circle touching segments *AB*,*AC* and the incircle of $\triangle ABC$, and r_B and r_C are defined analogously. Prove that

 $r_A + r_B + r_C \ge r$,

equality holding if and only if $\triangle ABC$ is equilateral.

Second Day

- 4. Let $n \ge 3$ cells be arranged into a circle. Each cell can be occupied by 0 or 1. The following operation is admissible: Choose a any cell *C* occupied by a 1, change it into a 0 and simultaneously reverse the entries in the two cells adjacent to *C* (so that *x*, *y* become 1 x, 1 y). Initially, there is a 1 in one cell and zeros elsewhere. For which values of *n* is it possible to obtain zeros in all cells in a finite number of admissible steps?
- 5. Let $P(x) = x^4 + a_1x^3 + a_2x^2 + a_3x + a_4$ be a polynomial with rational coefficients. Show that if P(x) has exactly one real root ξ , then ξ is a rational number.
- 6. The sequences (x_n) , (y_n) , (z_n) are given by

$$x_{n+1} = y_n + \frac{1}{x_n}, \quad y_{n+1} = z_n + \frac{1}{y_n}, \quad z_{n+1} = x_n + \frac{1}{z_n} \quad \text{for } n \ge 0,$$

where x_0, y_0, z_0 are given positive numbers. Prove that these sequences are unbounded.

Team competition – June ??

7. Let a > 3 be an odd integer. Show that for every positive integer *n* the number $a^{2^n} - 1$ has at least n + 1 distinct prime divisors.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

1

- 8. The plane has been partitioned into *N* regions by three bunches of parallel lines. What is the least number of lines needed in order that N > 1981?
- 9. For a function $f : [0,1] \to [0,1]$ we define $f^1 = f$ and $f^{n+1}(x) = f(f^n(x))$ for $0 \le x \le 1$ and $n \in \mathbb{N}$. Given that there is an *n* such that

 $|f^n(x) - f^n(y)| < |x - y|$ for all distinct $x, y \in [0, 1]$,

prove that there is a unique $x_0 \in [0,1]$ such that $f(x_0) = x_0$.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com