9-th Asian–Pacific Mathematical Olympiad 1997

1. Given

$$S = 1 + \frac{1}{1 + \frac{1}{3}} + \frac{1}{1 + \frac{1}{3} + \frac{1}{6}} + \dots + \frac{1}{1 + \frac{1}{3} + \frac{1}{6} + \dots + \frac{1}{1993006}},$$

where the denominators contain partial sums of the sequence of reciprocals of triangular numbers (i.e. $k = \frac{n(n+1)}{2}$ for n = 1, 2, ..., 1996). Prove that S > 1001.

- 2. Find an integer *n* with $100 \le n \le 1997$ such that $\frac{2^n + 2}{n}$ is also an integer.
- 3. In a triangle *ABC*, let m_a, m_b, m_c be the lengths of the angle bisectors (internal to the triangle), M_a, M_b, M_c the lengths of the angle bisectors extended until they meet the circle, and $l_a = \frac{m_a}{M_a}$, $l_b = \frac{m_b}{M_b}$, $l_c = \frac{m_c}{M_c}$. Prove that

$$\frac{l_a}{\sin^2 A} + \frac{l_b}{\sin^2 B} + \frac{l_c}{\sin^2 C} \ge 3,$$

and that equality holds if and only if ABC is an equilateral triangle.

- 4. Triangle $A_1A_2A_3$ has a right angle at A_3 . A sequence of points is defined by the following iterative process, where *n* is a positive integer. From A_n ($n \ge 3$), a perpendicular line is drawn to meet $A_{n-2}A_{n-1}$ at A_{n+1} .
 - (a) Prove that one and only one point *P* is interior to every triangle $A_{n-2}A_{n-1}A_n$, $n \ge 3$.
 - (b) Let *A*₁ and *A*₃ be fixed, and let *A*₂ assume all possible locations. Find the locus of *P*.
- 5. Suppose that *n* people $A_1, A_2, ..., A_n$, $(n \ge 3)$ are seated in a circle and that A_i has a_i objects such that $a_1 + a_2 + \cdots + a_n = nN$, where *N* is a positive integer. In order that each person has the same number of objects, each person A_i is to give or to receive a certain number of objects to or from its two neighbours A_{i-1} and A_{i+1} . (Here A_{n+1} means A_1 and A_0 means A_n .) How should this redistribution be performed so that the total number of objects transferred is minimum?

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

1