6-th Asian-Pacific Mathematical Olympiad 1994

- 1. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that:
 - (i) $f(x) + f(y) + 1 \ge f(x+y) \ge f(x) + f(y)$ for all $x, y \in \mathbb{R}$,
 - (ii) $f(0) \ge f(x)$ for all x with $0 \le x < 1$,
 - (iii) -f(-1) = f(1) = 1.
- 2. Given a nondegenerate triangle *ABC*, with circumcenter *O*, orthocenter *H*, and circumradius *R*, prove that OH < 3R.
- 3. Let *n* be an integer of the form $a^2 + b^2$, where *a* and *b* are coprime integers, such that if $p \le \sqrt{n}$ is a prime, then *p* divides *ab*. Determine all such *n*.
- 4. Is there an infinite set of points in the plane such that no three points are collinear, and the distance between any two points is rational?
- 5. You are given three lists A, B, and C. List A contains the numbers of the form 10^k in base 10, with *k* any positive integer. Lists B and C contain the same numbers translated into base 2 and 5 respectively:

А	В	С
10	1010	20
100	1100100	400
1000	1111101000	13000
:	:	:
•	•	•

Prove that for every integer n > 1, there is exactly one number in exactly one of the lists B or C that has exactly *n* digits.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

1