5-th Asian-Pacific Mathematical Olympiad 1993

- 1. Let ABCD be a rhombus with $\angle ABC = 60^{\circ}$. Let l be a line passing through D and having no other points in common with the rhombus. Let E and F be the points of intersection of l with AB and BC respectively. Let M be the point of intersection of CE and AF. Prove that $CA^2 = CM \cdot CE$.
- 2. Find the total number of different integer values the function

$$f(x) = [x] + [2x] + [5x/3] + [3x] + [4x]$$

takes for real numbers x with $0 \le x \le 100$.

- 3. Let $f(x) = a_n x^n + \dots + a_1 x + a_0$ and $g(x) = c_{n+1} x^{n+1} + \dots + c_1 x + c_0$ be nonzero real polynomials such that g(x) = (x+r)f(x) for some real number r. If $a = \max(|a_n|, \dots, |a_0|)$ and $c = \max(|c_{n+1}|, \dots, |c_0|)$, prove that $\frac{a}{c} \le n+1$.
- 4. Determine all positive integers n for which the equation

$$x^{n} + (2+x)^{n} + (2-x)^{n} = 0$$

has a solution in the integers.

- 5. Let $P_1, P_2, \dots, P_{1993} = P_0$ be distinct points in the *xy*-plane with the following properties:
 - (i) both coordinates of P_i are integers, for i = 1, 2, ..., 1993;
 - (ii) there is no point with both integer coordinates other than P_i and P_{i+1} on the line segment P_iP_{i+1} , for i = 0, 1, ..., 1992.

Prove that for some i, $0 \le i \le 1992$, there exists a point Q with coordinates (q_x, q_y) on the line segment joining $P_i P_{i+1}$ such that both $2q_x$ and $2q_y$ are odd integers.

