14-th Asian-Pacific Mathematical Olympiad 2002

1. Let a_1, a_2, \dots, a_n be a sequence of non-negative integers, where n is a positive integer. Let $A_n = \frac{a_1 + a_2 + \dots + a_n}{n}$. Prove that

$$a_1!a_2!\cdots a_n! \geq ([A_n]!)^n.$$

When does equality hold?

- 2. Find all positive integers a and b such that $\frac{a^2+b}{b^2-a}$ and $\frac{b^2+a}{a^2-b}$ are both integers.
- 3. Let ABC be an equilateral triangle. Let P be a point on the side AC and Q be a point on the side AB so that both triangles ABP and ACQ are acute. Let R and S be the orthocenters of triangles ABP and ACQ respectively. Segments BP and CQ meet at point T. If triangle TRS is equilateral, find all possible values of $\angle CBP$ and $\angle BCQ$.
- 4. Let x, y, z be positive numbers such that $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$. Show that

$$\sqrt{x+yz} + \sqrt{y+zx} + \sqrt{z+xy} \ge \sqrt{xyz} + \sqrt{x} + \sqrt{y} + \sqrt{z}$$
.

- 5. Find all functions f from \mathbb{R} to \mathbb{R} satisfying:
 - (i) There are only finitely many $s \in \mathbb{R}$ for which f(s) = 0, and
 - (ii) $f(x^4 + y) = x^3 f(x) + f(f(y))$ for all $x, y \in \mathbb{R}$.

