Log In
Register
IMOmath
Olympiads
Book
Training
IMO Results
Forum
IMOmath
Number Theory
1.
(8 p.)
Find the sum of all positive integers of the form \( n = 2^a3^b \) \( (a, b \geq 0) \) such that \( n^6 \) does not divide \( 6^n \).
2.
(21 p.)
Let \( \tau (n) \) denote the number of positive divisors of \( n \), including 1 and \( n \). Define \( S(n) \) by \( S(n)=\tau(1)+ \tau(2) + \dots + \tau(n) \). Let \( a \) denote the number of positive integers \( n \leq 2008 \) with \( S(n) \) odd, and let \( b \) denote the number of positive integers \( n \leq 2008 \) with \( S(n) \) even. Find \( ab \).
3.
(17 p.)
Find the largest possible integer \( n \) such that \( \sqrt n + \sqrt{n+60} = \sqrt m \) for some nonsquare integer \( m \).
4.
(26 p.)
Let \( a,b,c \) and \( d \) be positive real numbers such that \( a^2+b^2c^2d^2=0 \) and \( a^2b^2c^2+d^2=\frac {56}{53}(bc+ad) \), Let \( M \) be the maximum possible value of \( \frac {ab+cd}{bc+ad} \) ,If \( M \) can be expressed as \( \frac {m}{n} \),\( (m,n)=1 \) then find \( 100m+n \)
5.
(26 p.)
It is given that \( 181^2 \) can be written as the difference of the cubes of two consecutive positive integers. Find the sum of these two integers.
20052017
IMOmath.com
 imomath"at"gmail.com  Math rendered by
MathJax
Home

Olympiads

Book

Training

IMO Results

Forum

Links

About

Contact us