IMOmath

Geometry

1. (6 p.)
Let \( ABCD \) be a convex quadrilateral such that \( AB\perp BC \), \( AC\perp CD \), \( AB=18 \), \( BC=21 \), \( CD=14 \). Find the perimeter of \( ABCD \).

2. (13 p.)
Let \( AXYZB \) be a convex pentagon inscribed in a semicircle with diameter \( AB \). Suppose \( AZ-AX=6 \), \( BX-BZ=9 \), \( AY=12 \), and \( BY=5 \). Find the greatest integer not exceeding the perimeter of quadrilateral \( OXYZ \), where \( O \) is the midpoint of \( AB \).

3. (4 p.)
Let \( \alpha \) be the angle between vectors \( \vec a \) and \( \vec b \) with \( |\vec a|=2 \) and \( |\vec b|=3 \), given that the vectors \( \vec m=2\vec a-\vec b \) and \( \vec n=\vec a+5\vec b \) are orthogonal. If \( \cos\alpha=\frac pq \) with \( q>0 \) and \( \gcd(p,q)=1 \), compute \( p+q \).

4. (54 p.)
Let \( \triangle ABC \) be a triangle with \( AB=13 \), \( BC=14 \), and \( CA=15 \). Let \( O \) denote its circumcenter and \( H \) its orthocenter. The circumcircle of \( \triangle AOH \) intersects \( AB \) and \( AC \) at \( D \) and \( E \) respectively. Suppose \( \tfrac{AD}{AE}=\tfrac mn \) where \( m \) and \( n \) are positive relatively prime integers. Find \( m-n \).

5. (20 p.)
Let \( BC \) be a chord of length 6 of a circle with center \( O \) and radius 5. Point \( A \) is on the circle, closer to \( B \) that to \( C \), such that there is a unique chord \( AD \) which is bisected by \( BC \). If \( \sin\angle AOB=\frac pq \) with \( q>0 \) and \( \gcd(p,q)=1 \), find \( p+q \).





2005-2017 IMOmath.com | imomath"at"gmail.com | Math rendered by MathJax
Home | Olympiads | Book | Training | IMO Results | Forum | Links | About | Contact us