IMOmath

Geometry

1. (14 p.)
Let \( ABCD \) be a convex quadrilateral with \( AB = CD = 180 \). Assume further that the perimeter of \( ABCD \) is 640, \( AD \neq BC \), and \( \angle A = \angle C \). Then \( \cos \angle A \) can be represented as \( p/q \) for relatively prime positive integers \( p \) and \( q \). Calculate \( p+q \).

2. (37 p.)
Let \( \triangle ABC \) have \( AB=6 \), \( BC=7 \), and \( CA=8 \), and denote by \( \omega \) its circumcircle. Let \( N \) be a point on \( \omega \) such that \( AN \) is a diameter of \( \omega \). Furthermore, let the tangent to \( \omega \) at \( A \) intersect \( BC \) at \( T \), and let the second intersection point of \( NT \) with \( \omega \) be \( X \). The length of \( \overline{AX} \) can be written in the form \( \tfrac m{\sqrt n} \) for positive integers \( m \) and \( n \), where \( n \) is not divisible by the square of any prime. Find \( m+n \).

3. (16 p.)
Assume that all sides of the convex hexagon \( ABCDEF \) are equal and the opposite sides are parallel. Assume further that \( \angle FAB = 120^o \). The \( y \)-coordinates of \( A \) and \( B \) are 0 and 2 respectively, and the \( y \)-coordinates of the other vertices are 4, 6, 8, 10 in some order. The area of \( ABCDEF \) can be written as \( a\sqrt b \) for some integers \( a \) and \( b \) such that \( b \) is not divisible by a perfect square other than 1. Find \( a+b \).

4. (13 p.)
The right circular cone has height 4 and its base radius is 3. Its surface is painted black. The cone is cut into two parts by a plane parallel to the base, so that the volume of the top part (the small cone) divided by the volume of the bottom part equals \( k \) and painted area of the top part divided by the painted are of the bottom part also equals \( k \). If \( k \) is of the form \( p/q \) for two relatively prime numbers \( p \) and \( q \), calculate \( p+q \).

5. (18 p.)
Let \( K \) and \( L \) be the points on the sides \( AB \) and \( BC \) of an equilateral triangle \( ABC \) such that \( AK=5 \) and \( CL=2 \). If \( M \) is the point on \( AC \) such that \( \angle KML=60^o \), and if the area of the triangle \( KML \) is equal to \( 14\sqrt3 \) then the side of the triangle \( ABC \) can assume two values \( \frac{a\pm \sqrt b}c \) for some natural numbers \( a \), \( b \), and \( c \). If \( b \) is not divisible by a perfect square other than 1, find the value of \( b \).





2005-2017 IMOmath.com | imomath"at"gmail.com | Math rendered by MathJax
Home | Olympiads | Book | Training | IMO Results | Forum | Links | About | Contact us