Log In
Register
IMOmath
Olympiads
Book
Training
IMO Results
Forum
IMOmath
Combinatorics
1.
(14 p.)
Two students Alice and Bob participated in a twoday math contest. At the end both had attempted questions worth 500 points. Alice scored 160 out of 300 attempted on the first day and 140 out of 200 attempted on the second day, so her twoday success ratio was 300/500 = 3/5. Bob’s scores are different from Alice’s (but with the same twoday total). Bob had a positive integer score on each day. However, for each day Bob’s success ratio was less than Alice’s. Assume that \( p/q \) (\( p \) and \( q \) are relatively prime integers) is the largest possible twoday success ratio that Bob could have achieved. Calculate \( p+q \).
2.
(35 p.)
We are given an unfair coin. When the coin is tossed, the probability of heads is 0.4. The coin is tossed 10 times. Let \( a_n \) be the number of heads in the first \( n \) tosses. Let \( P \) be the probability that \( a_n/n \leq 0.4 \) for \( n = 1, 2, \dots , 9 \) and \( a_{10}/10 = 0.4 \). Evaluate \( \frac{P\cdot 10^{10}}{24^4} \).
3.
(35 p.)
There are 27 candidates in elections and \( n \) citizens that vote for them. If a candidate gets \( m \) votes, then \( 100m/n \leq m1 \). What is the smallest possible value of \( n \)?
4.
(5 p.)
Let \( S \) be the set of vertices of a unit cube. Find the number of triangles whose vertices belong to \( S \).
5.
(8 p.)
Let \( S = \{1, 2, 3, 5, 8, 13, 21, 34\} \). Find the sum \( \sum \max(A) \) where the sum is taken over all 28 twoelement subsets \( A \) of \( S \).
20052017
IMOmath.com
 imomath"at"gmail.com  Math rendered by
MathJax
Home

Olympiads

Book

Training

IMO Results

Forum

Links

About

Contact us