Log In
Register
IMOmath
Olympiads
Book
Training
IMO Results
Forum
IMOmath
Combinatorics
1.
(12 p.)
Given a convex polyhedron with 26 vertices, 60 edges and 36 faces, 24 of the faces are triangular and 12 are quadrilaterals. A space diagonal is a line segment connecting two vertices which do not belong to the same face. How many space diagonals does the polyhedron have?
2.
(22 p.)
We are given an unfair coin. When the coin is tossed, the probability of heads is 0.4. The coin is tossed 10 times. Let \( a_n \) be the number of heads in the first \( n \) tosses. Let \( P \) be the probability that \( a_n/n \leq 0.4 \) for \( n = 1, 2, \dots , 9 \) and \( a_{10}/10 = 0.4 \). Evaluate \( \frac{P\cdot 10^{10}}{24^4} \).
3.
(20 p.)
In a tournament club \( C \) plays 6 matches, and for each match the probabilities of a win, draw and loss are equal. If the probability that \( C \) finishes with more wins than losses is \( \frac pq \) with \( p \) and \( q \) coprime \( (q>0) \), find \( p+q \).
4.
(24 p.)
A bug moves around a triangle wire. At each vertex it has 1/2 chance of moving towards each of the other two vertices. The probability that after crawling along 10 edges it reaches its starting point can be expressed as \( p/q \) for positive relatively prime integers \( p \) and \( q \). Determine \( p+q \).
5.
(20 p.)
A circle of radius 1 is randomly placed inside a \( 15 \times 36 \) rectangle \( ABCD \). The probability that it does not intersect the diagonal \( AC \) can be expressed as \( p/q \) where \( p \) and \( q \) are relatively prime integers. Find \( p+q \).
20052017
IMOmath.com
 imomath"at"gmail.com  Math rendered by
MathJax
Home

Olympiads

Book

Training

IMO Results

Forum

Links

About

Contact us