IMOmath

Algebra

1. (7 p.)
Let \( a \), \( b \), and \( c \) be non-real roots of the polynimal \( x^3+x-1 \). Find \[ \frac{1+a}{1-a}+ \frac{1+b}{1-b}+ \frac{1+c}{1-c}.\]

2. (10 p.)
Let \( a \) be the coefficient of \( x^2 \) in the polynomial \[ (1-x)(1+2x)(1-3x)\dots (1+14x)(1-15x).\] Determine \( |a| \)

3. (29 p.)
Define a function \(f:\mathbb{Z}\to\mathbb{Z}\) such that \(f(k)=k^2+k+1\) for every integer \(k\). Find the largest positive integer \(n\) such that \[2015f(1^2)f(2^2)\cdots f(n^2)\geq \Big(f(1)f(2)\cdots f(n)\Big)^2.\]

4. (29 p.)
Let \( a_1,a_2,... \) be a sequence defined by \( a_1=1 \) and \[ a_{n+1}=\sqrt {a_n^2-2a_n+3}+1\] for \( n \ge 1 \). Find \( a_{513} \).

5. (22 p.)
Let \( f:\mathbb N\rightarrow\mathbb R \) be the function defined by \( f(1) = 1 \), \( f(n) = n/10 \) if \( n \) is a multiple of 10 and \( f(n) = n+1 \) otherwise. For each positive integer \( m \) define the sequence \( x_1 \), \( x_2 \), \( x_3 \), ... by \( x_1 = m \), \( x_{n+1} = f(x_n) \). Let \( g(m) \) be the smallest \( n \) such that \( x_n = 1 \). (Examples: \( g(100) = 3 \), \( g(87) = 7 \).) Denote by \( N \) be the number of positive integers \( m \) such that \( g(m) = 20 \). The number of distinct prime factors of \( N \) is equal to \( 2^u\cdot v \) for two non-negative integers \( u \) and \( v \) such that \( v \) is odd. Determine \( u+v \).





2005-2017 IMOmath.com | imomath"at"gmail.com | Math rendered by MathJax
Home | Olympiads | Book | Training | IMO Results | Forum | Links | About | Contact us