# Algebra

 1. (28 p.) Let $$a$$ and $$b$$ be positive real numbers such that $$ab=2$$ and $\dfrac{a}{a+b^2}+\dfrac{b}{b+a^2}=\dfrac78.$ Find $$a^6+b^6$$.

 2. (23 p.) Consider the set $$S\subseteq(0,1]^2$$ in the coordinate plane that consists of all points $$(x,y)$$ such that both $$[\log_2(1/x)]$$ and $$[\log_5(1/y)]$$ are even. The area of $$S$$ can be written in the form $$p/q$$ for two relatively prime integers $$p$$ and $$q$$. Evaluate $$p+q$$.

 3. (9 p.) Real numbers $$x,y,z$$ are real numbers greater than 1 and $$w$$ is a positive real number. If $$\log_xw=24$$, $$\log_yw=40$$ and $$\log_{xyz}w=12$$, find $$\log_zw$$.

 4. (28 p.) Let $$f:\mathbb N\rightarrow\mathbb R$$ be the function defined by $$f(1) = 1$$, $$f(n) = n/10$$ if $$n$$ is a multiple of 10 and $$f(n) = n+1$$ otherwise. For each positive integer $$m$$ define the sequence $$x_1$$, $$x_2$$, $$x_3$$, ... by $$x_1 = m$$, $$x_{n+1} = f(x_n)$$. Let $$g(m)$$ be the smallest $$n$$ such that $$x_n = 1$$. (Examples: $$g(100) = 3$$, $$g(87) = 7$$.) Denote by $$N$$ be the number of positive integers $$m$$ such that $$g(m) = 20$$. The number of distinct prime factors of $$N$$ is equal to $$2^u\cdot v$$ for two non-negative integers $$u$$ and $$v$$ such that $$v$$ is odd. Determine $$u+v$$.

 5. (9 p.) Let $$a$$, $$b$$, and $$c$$ be non-real roots of the polynimal $$x^3+x-1$$. Find $\frac{1+a}{1-a}+ \frac{1+b}{1-b}+ \frac{1+c}{1-c}.$

2005-2018 IMOmath.com | imomath"at"gmail.com | Math rendered by MathJax