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Part 1

Problems

1
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Algebra

Al. Let a5, 1 =1,2,3; j = 1,2,3 be real numbers such that a;; is positive for i = j and
negative for ¢ # j.

Prove that there exist positive real numbers ¢;, c;, c3 such that the numbers
a11€1 + a12¢2 + a13C3, a21C1 + G22C3 + Q23C3, a31€1 + a3z2C2 + a33C3

are all negative, all positive, or all zero.

A2. Find all nondecreasing functions f: R — R such that

(i) f(0)=0, f(1) =1,
(ii) f(a) + f(b) = f(a)f(b) + f(a + b — ab) for all real numbers a, b such that a < 1 < b.

A3. Consider pairs of sequences of positive real numbers
@ >ax>a3>---, by 2 by > b3 > -
and the sums

An=a1+-+a,, Bp=b+ - +by n=12....

For any pair define ¢; = min{a;,b;} and C, =c; + -+ ¢, n =1,2,....

(1) Does there exist a pair (@i)i>1, (bi)i>1 such that the sequences (An)n>1 and (By)n>1 are
unbounded while the sequence (Cn)n>1 is bounded?

(2) Does the answer to question (1) change by assuming additionally that b; = 1 /i, i =
1,2,...7

Justify your answer.
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A4. Let n be a positive integer and let z; < 5 < --- < z, be real numbers.

(1) Prove that

(Z |.’Ih - .’IIJ|) < @ Z(CIH - :Ej)z.

(2) Show that the equality holds if and only if i, ..., z, is an arithmetic sequence.

A5. Let R* be the set of all positive real numbers. Find all functions f: Rt — R* that
satisfy the following conditions:

(1) flzyz) + f(2) + f(y) + f(2) = f(Vzy) f(Vy2) f(Vzz) for all 7,y, 2 € RY;
(i) flz)< f(y)foralll <z <y.

A6. Let n be a positive integer and let (z1,...,Z,), (¥1,-.-,Yn) be two sequences of positive
real numbers. Suppose (22, ..., 22,) is a sequence of positive real numbers such that

z,-2+j > TY; forall1 <47 <n.

Let M = max{zy,...,20,}. Prove that

M+z+ -+ 2 2> T4+ T\ (14 + Un
2n - n n '
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Combinatorics

C1. Let A be a 101-element subset of the set S = {1,2,...,1000000}. Prove that there
exist numbers tq, t3, ..., ti00 in S such that the sets

Aj:{$+tj|$€A}, ]:1,2,,100

are pairwise disjoint.

C2. Let Dy, ..., D, be closed discs in the plane. (A closed disc is the region limited by a
circle, taken jointly with this circle.) Suppose that every point in the plane is contained in
at most 2003 discs D;. Prove that there exists a disc D which intersects at most 7-2003 — 1
other discs D;.

C3. Let n > 5 be a given integer. Determine the greatest integer k for which there exists a
polygon with n vertices (convex or not, with non-selfintersecting boundary) having & internal
right angles.

C4. Let zy, ..., z, and yi, ..., y, be real numbers. Let A = (@ij)i<ij<n be the matrix
with entries
1, ifzi+y; 20
Qij = .
0, ifz;+y; <O.

Suppose that B is an n X n matrix with entries 0, 1 such that the sum of the elements in

each row and each column of B is equal to the corresponding sum for the matrix A. Prove
that A = B.

C5. Every point with integer coordinates in the plane is the centre of a disc with radius
1/1000.

(1) Prove that there exists an equilateral triangle whose vertices lie in different discs.

(2) Prove that every equilateral triangle with vertices in different discs has side-length
greater than 96.

Co, Be
Ty, € I
e, ‘1?1‘12
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C6. Let f(k) be the number of integers n that satisfy the following conditions:

(i) 0 < n < 10%, so n has exactly k digits (in decimal notation), with leading zeroes
allowed;

(ii) the digits of n can be permuted in such a way that they yield an integer divisible by
11.

Prove that f(2m) = 10f(2m — 1) for every positive integer m.
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Geometry

G1. Let ABCD be a cyclic quadrilateral. Let P, @, R be the feet of the perpendiculars
from D to the lines BC, C A, AB, respectively. Show that PQ = QR if and only if the
bisectors of ZABC and ZADC are concurrent with AC.

G2. Three distinct points A, B, C are fixed on a line in this order. Let T be a circle passing
through A and C' whose centre does not lie on the line AC. Denote by P the intersection
of the tangents to I' at A and C. Suppose I' meets the segment PB at (. Prove that the
intersection of the bisector of ZAQC and the line AC does not depend on the choice of T.

G3. Let ABC be a triangle and let P be a point in its interior. Denote by D, E, F the
feet of the perpendiculars from P to the lines BC, CA, AB, respectively. Suppose that

AP? + PD? = BP? + PE? = CP? + PF?.

Denote by Iy, I, Ic the excentres of the triangle ABC. Prove that P is the circumcentre
of the triangle I4Iglc.

G4. Let I'y, I'y, T's, I'y be distinct circles such that Iy, I's are externally tangent at P, and
'y, I'y are externally tangent at the same point P. Suppose that I'; and [y; Ty and I's; s
and I'y; I'y and T'; meet at A, B, C, D, respectively, and that all these points are different
from P.
Prove that
AB-BC PB?
AD.-DC =~ PD?*

G5. Let ABC be an isosceles triangle with AC = BC, whose incentre is I. Let P be
a point on the circumcircle of the triangle AIB lying inside the triangle ABC. The lines
through P parallel to CA and CB meet AB at D and E, respectively. The line through P
parallel to AB meets CA and CB at F and G, respectively. Prove that the lines DF and
EG intersect on the circumcircle of the triangle ABC.
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G6. Each pair of opposite sides of a convex hexagon has the following property:

the distance between their midpoints is equal to \/g/ 2 times the sum of their
lengths.

Prove that all the angles of the hexagon are equal.

G7. Let ABC be a triangle with semiperimeter s and inradius . The semicircles with
diameters BC, CA, AB are drawn on the outside of the triangle ABC. The circle tangent
to all three semicircles has radius ¢. Prove that
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Number Theory

N1. Let m be a fixed integer greater than 1. The sequence xy, 1, Z5, ... is defined as
follows: .
2t if0<i<m-1;
T; =
i Z;nﬂ Ti—j, if 4 > m.

Find the greatest k for which the sequence contains k consecutive terms divisible by m.

N2. Each positive integer a undergoes the following procedure in order to obtain the num-
ber d = d(a):

(i) move the last digit of a to the first position to obtain the number b

(ii) square b to obtain the number c;
(iii) move the first digit of ¢ to the end to obtain the number d.

(All the numbers in the problem are considered to be represented in base 10.) For example,
for a = 2003, we get b = 3200, ¢ = 10240000, and d = 02400001 = 2400001 = d(2003).

Find all numbers a for which d(a) = a?.

N3. Determine all pairs of positive integers (a,b) such that

a2

2ab%? — b3 + 1

1s a positive integer.

Co, e
Ty, € I
e, ‘1?!‘12
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N4. Let b be an integer greater than 5. For each positive integer n, consider the number

Tp=11-+-122.--235,

n—1 n

written in base b.

Prove that the following condition holds if and only if b = 10:

there exists a positive integer M such that for any integer n greater than M, the
number z,, is a perfect square.

N5. An integer n is said to be good if |n| is not the square of an integer. Determine all
integers m with the following property:

m can be represented, in infinitely many ways, as a sum of three distinct good
integers whose product is the square of an odd integer.

N6. Let p be a prime number. Prove that there exists a prime number ¢ such that for
every integer n, the number n? — p is not divisible by gq.

N7. The sequence ag, a1, az, ... is defined as follows:

ag = 2, ary1 =202 —1 for k> 0.

Prove that if an odd prime p divides a,, then 2"*3 divides p? — 1.

N8. Let p be a prime number and let A be a set of positive integers that satisfies the
following conditions:

(i) the set of prime divisors of the elements in A consists of p — 1 elements;

(i) for any nonempty subset of A, the product of its elements is not a perfect p-th power.

What is the largest possible number of elements in A?
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Part 11

Solutions

11
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Algebra

Al. Letay, ¢ =1,2,3; j = 1,2, 3 be real numbers such that a;; is positive for i = j and
negative for ¢ # j.

Prove that there exist positive real numbers C1, Co2, 3 such that the numbers
ani€ + ajzc + ajscs, G21€1 + Q22C3 + agscs, a31C1 + G32C2 + agszcs

are all negative, all positive, or all zero.

Solution. Set 0(0,0,0), P(au,a21,a31), Q(alg,azg,agz), R(013,023,a33) in the three di-
mensional Euclidean space. It is enough to find a point in the interior of the triangle PQR
whose coordinates are all positive, all negative, or all zero.

Let O', P', ', R' be the projections of O, P, @, R onto the zy-plane. Recall that points
P', @ and R’ lie on the fourth, second and third quadrant respectively.

Case 1: (' is in the exterior or on the boundary of the triangle P'Q'R’.
Yt

Denote by S’ the intersection of the segments P'Q)’ and O'R’, and let S be the point
on the segment P whose projection is S’. Recall that the z-coordinate of the point S is
negative, since the z-coordinate of the points P’ and Q' are both negative. Thus any point
in the interior of the segment SR sufficiently close to S has coordinates all of which are
negative, and we are done.

Case 2: O' is in the interior of the triangle P'Q'R’.
Yt

Ky

[°

R/\

Pl

© Copyright: The IMO Compendium Group,
Mathematical Society of Serbia, ‘
D. Djukic, V. Jankovic, 1. Matic, N. Petrovic,

WWW.1mo.org.yu

WWW.imo.org. yu



14

Let T be the point on the plane PQR whose projection is O'. If T = O, we are done
again. Suppose T has negative (resp. positive) z-coordinate. Let U be a point in the interior
of the triangle PQR, sufficiently close to T, whose z-coordinates and y-coordinates are both
negative (resp. positive). Then the coordinates of U are all negative (resp. positive), and
we are done.
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A2. Find all nondecreasing functions f: R — R such that

(i) f(0)=0, f(1) =1
(ii)) f(a)+ f(b) = f(a)f(b) + f(a+ b — ab) for all real numbers a, b such that a < 1 < b.

Solution. Let g(z) = f(z + 1) — 1. Then g is nondecreasing, g(0) = 0, g(—1) = —1, and
g(—(a-1)(b-1)) = —gla—1)g(b—1) for a < 1 < b. Thus g(—zy) = —g(z)g(y) for
T <0<y, or g(yz) = —g(y)g(—2) for y,z > 0. Vice versa, if g satisfies those conditions,
then f satisfies the given conditions.

Case 1: If g(1) = 0, then g(z) = 0 for all z > 0. Now let g: R — R be any nondecreasing
function such that g(—1) = —1 and g(z) = 0 for all z > 0. Then g satisfies the required
conditions.

Case 2: If g(1) > 0, putting y = 1 yields

9(2) ()

for all z > 0. Hence g(yz) = g(y)g(z)/g(1) for all y,z > 0. Let h(z) = g(x)/g(1). Then h is
nondecreasing, h(0) = 0, h(1) = 1, and h(zy) = h(z)h(y). It follows that h(z?) = h(z)? for
any z > 0 and any rational number ¢. Since h is nondecreasing, there exists a nonnegative
number k such that h(z) = z* for all z > 0. Putting g(1) = ¢, we have g(z) = cz* for all
z > 0. Furthermore (*) implies g(~z) = —z* for all z > 0. Now let £ > 0, ¢ > 0 and

czk, if z > 0;
g9(z) = 40, if z = 0
—(—z)k, ifz <.

Then g is nondecreasing, g(0) = 0, g(—1) = —1, and g(—zy) = —g(x)g(y) for z < 0 < y.
Hence g satisfies the required conditions.

We obtain all solutions for f by the re-substitution f(z) = g(z — 1) + 1. In Case 1, we
have any nondecreasing function f satisfying

1, ifz>1,;
f(z) = {o, if 7 = 0.

In Case 2, we obtain
clz—1)*F+1, ifz>1;
flz)y=1<1, ifz =1,
—(1-2)k+1, ifz<]1,
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A3. Consider pairs of sequences of positive real numbers
a; > a2 a3 2> -+, by >2by>b3>---
and the sums

Ap=a1+-+an, Bp=b+--+by n=12,....

For any pair define ¢; = min{a;,b;} and C, =¢; + -+ ¢, n=1,2,....
(1) Does there exist a pair (a;)i>1, (bi)i>1 such that the sequences (Ap)n>1 and (By)a>1 are
unbounded while the sequence (Cy,)n>1 is bounded?
(2) Does the answer to question (1) change by assuming additionally that b; = 1/3, i =
1,2,...7

Justify your answer.

Solution. (1) Yes.

Let (¢;) be an arbitrary sequence of positive numbers such that ¢; > ¢;;; and Yoo ¢ < 00.
Let (k) be a sequence of integers satisfying 1 = k; < ko < k3 < --- and (kpy1—km)cx,, > 1.

Now we define the sequences (a;) and (b;) as follows. For n odd and k, < i < kpy1, define
a; = ¢k, and b; = ¢;. Then we have A . 1 > Ag,_1+ 1. For n even and k, < i < kpyq,
define a; = ¢; and b; = ¢;,. Then we have By, ., 1 > By,_1 + 1. Thus (A,) and (B,) are
unbounded and ¢; = min{a;, b; }.

(2) Yes.
Suppose that there is such a pair.
Case 1: b; = ¢; for only finitely many i’s.
There exists a sufficiently large I such that ¢; = a; for any ¢ > I. Therefore

E C; = E a; = 00,

i>1 i>I
a contradiction.
Case 2: b; = ¢; for infinitely many ¢’s.
Let (k) be a sequence of integers satisfying kp11 > 2k, and by, = c,,. Then

ki1
1

Z cx > (kip1 — ki)k

>

DN | =

Thus Y2, ¢; = 00, a contradiction.
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A4. Let n be a positive integer and let 7; < 25 < -+ < z,, be real numbers.

(1) Prove that
2
- 2(n® —1) <
(Z - ‘”"') <LV Y G-ay,
1,j=1 £,J=1

(2) Show that the equality holds if and only if z1, ..., z, is an arithmetic sequence.

Solution. (1) Since both sides of the inequality are invariant under any translation of all
z;’s, we may assume without loss of generality that Yo, zi=0.

We have " .
Z |zi — ;| = QZ(xj —z;) = 22(% -n—1)z;

5,j=1 i<j i=1
By the Cauchy-Schwarz inequality, we have

(lel—%') <4Z 2z—n—1)2zx —4. n+1)n—1 Zx

t,J=1

On the other hand, we have

Z( z; — T;) —an —z}:x,Zm]+an :2nZz

i,j=1
Therefore
(n - 1) . 2
lez—fcﬂ > (@i —z)>
1.7 1 ,]21
(2) If the equality holds, then z; = k(2i — n — 1) for some k, which means that Ziy ey Tn

Is an arithmetic sequence.

On the other hand, suppose that z,, ..., 7o, is an arithmetic sequence with common
difference d. Then we have

xl +xn
2 .

_ g(Qi -1+
Translate z;’s by —(z1 + z5,)/2 to obtain z; = d(2i — n — 1)/2 and Y i zi =0, from which
the equality follows.
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A5. Let RT be the set of all positive real numbers. Find all functions f: R* — R* that
satisfy the following conditions:

(1) flzyz) + f(2) + f(y) + f(2) = F(Vaz9) f(/92) f(/zz) for all z,y, 2 € RT;
(ii) f(z) < f(y) foralll <z <y.

Solution 1. We claim that f(x) = z* +z~*, where ) is an arbitrary positive real number.

Lemma. There exists a unique function g: [1,00) — [1,00) such that

1
f(z) = gl@) + 5

Proof. Put z =y = z =1 in the given functional equation
flzyz) + f(2) + f(v) + f(2) = F(VEY) f (VY2) f (V)

to obtain 4f(1) = f(1)3. Since f(1) > 0, we have f(1) = 2.

Define the function A: [1,00) — [2,00) by A(z) = z + 1/z. Since f is strictly
increasing on [1,00) and A is bijective, the function g is uniquely determined. |

Since A is strictly increasing, we see that g is also strictly increasing. Since f(1) = 2, we
have g(1) = 1.
We put (z,9,z) = (t,t,1/t), (t2,1,1) to obtain f(¢) = f(1/t) and f(t*) = f(t)* — 2. Put
(z,y,2) = (s/t,t/s, st), (s% 1/s%1?) to obtain
o+ £(4) = 100 and 160 (5) = 1)+ 1) = 5+ S0~ 4

Let 1 < z < y. We will show that g(zy) = g(z)g(y). We have

fzy) + f<%) = (g(x) + ﬁi) (g(y) + ﬁ)

= (st + s ) + (57 + 45,
and
f(my)f@) = (g(w) + ﬁ)zj (g y) + g(l—y)>2 —4
B (g(x)g(y) " g(w)g(y)) (%; i zgi)
Thus

. CAY G 1 g®) 9@\ _ . 9(y)
{””J(J} {“”@“@maww@+mw} {M“”@”AQ@Q}
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Since f(zy) = A(g(zy)) and A is bijective, it follows that either 9(zy) = g(z)g(y) or
9(zy) = 9(y)/9(x). Since zy > y and g is increasing, we have g(ry) = 9(z)g(y).

Fix a real number ¢ > 1 and suppose that g9(e) = *. Since g(¢) > 1, we have A > 0.
Using the multiplicity of g, we may easily see that g(e?) = % for all rationals q € [0,00).
Since g is strictly increasing, g(¢!) = ¢ for all ¢ € [0, 00), that is, g(z) = z* for all > 1.

For all z > 1, we have f(z) = 2* + 2. Recalling that f(t) = f(1/t), we have f(z) =
r+z for 0 <z < 1 as well.

Now we must check that for any \ > 0, the function f(z) = z* + 2~ satisfies the two
given conditions. The condition (i) is satisfied because

FVzy) f(Vyz) f(Vzz) = ((zy)V? + (zy)™2) ((y2)™? + (y2)™2) ((z2)? + (22)7*/?)
= (zyz)* + 2 + P+ 2+ ¢ y A 427 4 (zyz)™
= fleyz) + f(z) + f(y) + f(2).

The condition (ii) is also satisfied because 1 < z < y implies

~ @) = @ - (1-
fly) = fz) = (y )(1 (xy)A)>0.

Solution 2. We can a find positive real number \ such that f(e) = exp(A)+exp(—A) since
the function B: [0,00) —» [2,00) defined by B(z) = exp(z) + exp(—z) is bijective.

Since f(¢)? = f(t?) + 2 and f(z) > 0, we have

(o) () -2

for all nonnegative integers n.

Since f(st) = f(s)f(t) — f(t/s), we have

o(22) <s{on() (@) - (o(252)

for all nonnegative integers m and n.
From () and f(1) = 2, we obtain by induction that

o(2) <oo(2) e of-2)

for all nonnegative integers m and n.

Since f is increasing on [1,00), we have f(z) = 2* + 2~ for > 1.

We can prove that f(z) = 2* + 22 for 0 < 2 < 1 and that this function satisfies the
given conditions in the same manner as in the first solution.
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A6. Let n be a positive integer and let (z1,...,Zs), (¥1,- .-, Yn) be two sequences of positive
real numbers. Suppose (zs,. .., 22,) is a sequence of positive real numbers such that

zfﬂ- > Ty forall1<,5 <n.

Let M = max{zs,...,22,}. Prove that

M+Zz+"‘+22n 2> T+t z, N+ +Yn
2n - n n '

Solution. Let X = max{z,...,z,} and Y = max{yi,...,yn}. By replacing z; by z; =
z;/X, y; by yi = y;/Y, and z; by 2] = z;/v XY, we may assume that X =Y = 1. Now we
will prove that

M+zon+-tom2m+ - +Tatyi+- +n ()

SO

2n -2
which implies the desired result by the AM-GM inequality.

M+Z2+"‘+22n > 1(m1+---+xn+y1+---+yn>
n n

To prove (x), we will show that for any r > 0, the number of terms greater that r on
the left hand side is at least the number of such terms on the right hand side. Then the
kth largest term on the left hand side is greater than or equal to the kth largest term on
the right hand side for each k, proving (x). If » > 1, then there are no terms greater than
r on the right hand side. So suppose r < 1. Let A= {1 < i< n |z >r}, a=]A,
B={1<i<n]|y >r}, b=|B|. Since max{zi,...,zn} = max{yi,...,yn} =1, both a
and b are at least 1. Now z; > r and y; > r implies z;,; > \/ZT;y; > T, SO

C={2<i<2n|z>r}D>DA+B={a+f|ac A, e B}

However, we know that |A + B| > |A] + |B| — 1, because if A = {i1,...,%5}, i1 < -+ < iq
and B = {j1,...,Jb}, j1 < -+ < Jb, then the a + b — 1 numbers ¢; + j1, 41 + J2, ..., %1 + Jb,
ia+7Jb, - .., ta +Jb are all distinct and belong to A+ B. Hence |C| > a+b— 1. In particular,
|C| > 1 s0 zx > r for some k. Then M > r, so the left hand side of (x) has at least a + b
terms greater than r. Since a + b is the number of terms greater than r on the right hand
side, we have proved (x).
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Combinatorics

C1. Let A be a 101-element subset of the set S = {1,2,...,1000000}. Prove that there
exist numbers ¢y, ¢y, ..., 190 in S such that the sets

Aj={z+t;|z € A}, J=12,...,100

are pairwise disjoint.

Solution 1. Consider the set D = {z —y |,y € A}. There are at most 101 x 100 +1=
10101 elements in D. Two sets A + t; and A +t; have nonempty intersection if and only if
ti —tjisin D. So we need to choose the 100 elements in such a way that we do not use a
difference from D.

Now select these elements by induction. Choose one element arbitrarily. Assume that
k elements, k < 99, are already chosen. An element z that is already chosen prevents us
from selecting any element from the set z + D. Thus after k elements are chosen, at most
10101k < 999999 elements are forbidden. Hence we can select one more element.

Comment. The size |S| = 106 is unnecessarily large. The following statement is true:

If Ais a k-element subset of S = {1,...,n} and m is a positive integer such
that n > (m — 1)((5) + 1), then there exist t1,-..,tm € S such that the sets
Aj={z+tj|z€ A}, j=1,... . m are pairwise disjoint.

Solution 2. We give a solution to the generalised version.
Consider the set B = {lz - y| | z,y € A}. Clearly, [B| < (’2“) + 1.

It suffices to prove that there exist #,, .. . ytm € S such that [t; —¢;| ¢ B for every distinct
¢t and j. We will select ¢y, ... , tm inductively.

Choose 1 as t;, and consider the set C; = S\(B+t;). Then we have IC1] > n—((5) +1) >
(m—2)((§) +1).

For 1 < ¢ < m, suppose that t1, ..., t; and Cj are already defined and that [Ci| >

(m -4 — 1)(('2“) + 1) 2 0. Choose the least element in Ci as t;1; and consider the set
Ci+1 = Ci \ (B + ti+1). Then

etz 100 () +1) > m=i=2((3)+1) 20

Clearly, ty, ..., t,, satisfy the desired condition.
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C2. Let Dy, ..., D, be closed discs in the plane. (A closed disc is the region limited by a
circle, taken jointly with this circle.) Suppose that every point in the plane is contained in
at most 2003 discs D;. Prove that there exists a disc Dy which intersects at most 7-2003 — 1
other discs D;.

Solution. Pick a disc S with the smallest radius, say s. Subdivide the plane into seven
regions as in Figure 1, that is, subdivide the complement of S into six congruent regions 77,
..y Tg.

Figure 1

Since s is the smallest radius, any disc different from S whose centre lies inside S contains
the centre O of the disc S. Therefore the number of such discs is less than or equal to 2002.

We will show that if a disc Dy, has its centre inside T} and intersects S, then D; contains
P,, where P, is the point such that OP; = v/3 s and OP, bisects the angle formed by the two
half-lines that bound T;.

Subdivide T; into U; and V; as in Figure 2.
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Figure 2

The region Uj is contained in the disc with radius s and centre P;. Thus, if the centre of
Dy is inside U;, then Dy contains P,

Suppose that the centre of Dy is inside Vi. Let @ be the centre of D, and let R be
the intersection of OQ and the boundary of S. Since Dy intersects S, the radius of Dy is
greater than QR. Since ZQP,R > ZCP,B = 60° and ZP,RO > £ZP,BO = 120°, we have
ZQPR > ZP,RQ. Hence QR > QPF; and so Dy, contains P,.

A
U;
F; o)

R

Q B

C
Figure 3
Fori=1,...,6, the number of discs Dy, having their centres inside T; and intersecting S

is less than or equal to 2003. Consequently, the number of discs Dy, that intersect S is less
than or equal to 2002 + 6 - 2003 = 7 - 2003 — 1.
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C3. Let n > 5 be a given integer. Determine the greatest integer k£ for which there exists a
polygon with n vertices (convex or not, with non-selfintersecting boundary) having k internal
right angles.

Solution. We will show that the greatest integer k satisfying the given condition is equal
to 3 for n =5, and |2n/3] + 1 for n > 6.

Assume that there exists an n-gon having k internal right angles. Since all other n — k
angles are less than 360°, we have

(n —k)-360° + k- 90° > (n — 2) - 180°,

or k < (2n+4)/3. Since k and n are integers, we have k < |2n/3] + 1.

If n =5, then |2n/3| + 1 = 4. However, if a pentagon has 4 internal right angles, then
the other angle is equal to 180°, which is not appropriate. Figure 1 gives the pentagon with
3 internal right angles, thus the greatest integer k is equal to 3.

Figure 1

We will construct an n-gon having |2n/3] +1 internal right angles for each n > 6. Figure
2 gives the examples for n = 6,7, 8.

n==6 n="7 n=28
Figure 2
For n > 9, we will construct examples inductively. Since all internal non-right angles in
this construction are greater than 180°, we can cut off ‘a triangle without a vertex’ around

a non-right angle in order to obtain three more vertices and two more internal right angles
as in Figure 3.

Figure 3
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Comment. Here we give two other ways to construct examples.

One way is to add ‘a rectangle with a hat’ near an internal non-right angle as in Figure

—_

Figure 4

4.

The other way is ‘the escaping construction.” First we draw right angles in spiral.

=

Then we ‘escape’ from the point P.

The followings are examples for n = 9,10,11. The angles around the black points are
not right.

n=9 n =10 n=11
The ‘escaping lines’ are not straight in these figures. However, in fact, we can make them
straight when we draw sufficiently large figures.
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C4. Let zy, ..., z, and yi, ..., yo be real numbers. Let A = (a;;)1<ij<n be the matrix
with entries
1, ifz;+y; >0
Ai; =
Yo, ifzi+y; <O.
Suppose that B is an n X n matrix with entries 0, 1 such that the sum of the elements in

each row and each column of B is equal to the corresponding sum for the matrix A. Prove
that A = B.

Solution 1. Let B = (bij)lgi,an- Define S = lem.s,l(xi + y,-)(a,-j - b”)

On one hand, we have
S = Z:I?i (Zaij - me> +Zy]‘ (Zaij - Zb”) =0.
i=1 j=1 j=1 j=1 i=1 i=1

On the other hand, if z; +y; > 0, then a;; = 1, which implies a;; —bi; > 0;if z; +y; <0,
then a;; = 0, which implies a;; — b;; < 0. Therefore (z; + y;)(ai; — b;;) > 0 for every i and j.

Thus we have (z; + y;)(a;; — bij) = 0 for every < and j. In particular, if a;; = 0, then
z; +y; < 0 and so a;; — b;; = 0. This means that a;; > b;; for every i and j.

Since the sum of the elements in each row of B is equal to the corresponding sum for A,
we have a;; = b;; for every ¢ and j.

Solution 2. Let B = (b;;)1<ij<n. Suppose that A # B, that is, there exists (%0, Jo) such
that a;,j, # bigjo- We may assume without loss of generality that a;,;, = 0 and bigjo = 1.

Since the sum of the elements in the 4y-th row of B is equal to that in A, there exists 1
such that a;,;, =1 and b;,5 = 0. Similarly there exists i; such that a;,; = 0 and bij, = 1.
Let us define 4 and ji inductively in this way so that a;,;, = 0, bivie = 1, @ipje, = 1,

blk]k-i-l = 0.

Because the size of the matrix is finite, there exist s and ¢ such that s # ¢ and (4,, j,) =
(it, Jt)-

Since a;,j, = 0 implies z;, +y;, < 0 by definition, we have Y";_" (z;, +v;,) < 0. Similarly,

since a;,j,,, = 1 implies z;, + y;,,, > 0, we have Zk (i, + Yjrr1) = 0. However, since
Js = Js, we have

t—1 t—1
Z(xik + Yjurs) Zx%k + Z Yjr = qu + Zyjk = Z Tiy, + Yji)-
k=s k=s

k=s+1

This is a contradiction.
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C5. Every point with integer coordinates in the plane is the centre of a disc with radius
1/1000.

(1) Prove that there exists an equilateral triangle whose vertices lie in different discs.

(2) Prove that every equilateral triangle with vertices in different discs has side-length
greater than 96.

Solution 1. (1) Define f: Z —» [0,1) by f(z) = zv3 — |zv/3]. By the pigeonhole
principle, there exist distinct integers z; and z, such that | f(z) — f(x2)| < 0.001. Put
a = |21 —2,|. Then the distance either between (a,a+/3) and (a, |aV/3]) or between (a, av/3)

and (a, [av/3] + 1) is less than 0.001. Therefore the points (0,0), (2a,0) , (@,av/3) lie in
different discs and form an equilateral triangle.

(2) Suppose that P'Q'R’ is a triangle such that P'Q' = Q'R' = R'P' =1 < 96 and P, @',
R’ lie in discs with centres P, @, R, respectively. Then

[-0.002 < PQ,QR,RP <1+ 0.002.

Since PQR is not an equilateral triangle, we may assume that PQ # QR. Therefore

|PQ* — QR?| = (PQ + QR)|PQ - QR|
< ((+0.002) + (1 4 0.002)) (¢ + 0.002) — (I — 0.002))
< 2-96.002 - 0.004
<1

However, PQ? — QR? € Z. This is a contradiction.

Solution 2. We give another solution to (2).

Lemma. Suppose that ABC and A’'B'C’ are equilateral triangles and that A, B, C and
A, B', C' lie anticlockwise. If AA’, BB' < r, then CC' < 2r.

Proof. Let o, B3, 7v; o/, 8/, 7' be the complex numbers corresponding to A4, B, C; A', B',
C’'. Then

y=wf+(l-—w)a and ¥ =wh +(1-w)d
where w = (1 4+ v/31) /2. Therefore

=y == |wB-8)+1-w)a-d)
<|wl||B -8+ 1 —wlla—d|=BB + AA
< 2r.
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Suppose that P, @, R lie on discs with radius r and centres P', @', R/, respectively, and
that PQR is an equilateral triangle. Let R” be the point such that P'Q'R" is an equilateral
triangle and P', ', R’ lie anticlockwise. It follows from the lemma that RR" < 2r, and so
R'R" < RR' + RR" < r + 2r = 3r by the triangle inequality.

yal m sl S :
Put P'Q' = n and PR = ) where m, n, s, t are integers. We may suppose that

m,n > 0. Then we have

\/(m_Tm-s)2+<ﬁ—;n—@—t)253r.

Setting a = 2t — n and b = m — 2s, we obtain

\/(a - m\/g)2 + (b - n\/g)2 < 6r.

Since |a — mv/3| > 1/|a + mv3|, |b - nv3| > 1/|b+ nv3| and |a| < mv3 + 6r,
|b| < nv/3 + 67, we have

1 1
\/(2m\/§ + 61‘)2 - (2nv3 + 67")2 < 6r.

Since 1/x2 + 1/y? > 8/(z + y)? for all positive real numbers z and y, it follows that

2v2
< 6r.
2v/3(m +n) + 12r

As P'Q = vVm?Z ¥+ n? > (m +n)/v/?2, we have

2
V2 < 6r
26 P'Q' + 12r

Therefore 1
PIQI >

—Vor.
= 6V37

Finally we obtain
1

6v3r
For r = 1/1000, we have PQ > 96.22--- > 96.

PQ>PQ -2r> —V6r—2r.
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C6. Let f(k) be the number of integers n that satisfy the following conditions:

i) 0 < n < 10%, so n has exactly k digits (in decimal notation), with leading zeroes
allowed;

(ii) the digits of n can be permuted in such a way that they yield an integer divisible by
11.

Prove that f(2m) = 10f(2m — 1) for every positive integer m.

Solution 1. We use the notation [ax_1ax—2 - - - ao] to indicate the positive integer with digits
ag—1, k-2, - - -, Q-
The following fact is well-known:
k—

[ak—1ak—2--ag) =7 (mod 11) <= Z(—l)‘a, =14 (mod 11).
=0

—

Fix m € N and define the sets A; and B; as follows:

e A, is the set of all integers n with the following properties:
(1) 0<n<10%, ie., nhas 2m digits;

(2) theright 2m—1 digits of n can be permuted so that the resulting integer is congruent
to ¢ modulo 11.

e B, is the set of all integers n with the following properties:
(1) 0<n <1021 ie., n has 2m — 1 digits;
(2) the digits of n can be permuted so that the resulting integer is congruent to i
modulo 11.

It is clear that f(2m) = |Ao| and f(2m —1) = |By|. Since 99---9 =0 (mod 11), we have

2m
n€A < 99---9-ne A_,.
2m
Hence
|Ai| = |A—i]. (1)
Since 99---9 =9 (mod 11), we have
2m—1
ne Bi <:> 99...9—n € Bg_,'.
2m—1
Thus
| Bi| = |Bo—- (2)

For any 2m-digit integer n = [jasm—2 - - - ag], we have

n €A < [azm_z . 'ao] S Bi_j.
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Hence
|A;| = |Bs| + |Bi—1| + -+ + | Bi—gl.

Since B; = Bj,11, this can be written as

10
|Ail = " |Bi| — |Bisil, (3)
k=0
hence
|Ail = |4;| <= |Bis1| = |Bjsl- (4)

From (1), (2), and (4), we obtain |A;| = |Ao| and |B;| = |By|. Substituting this into (3)
yields |Ag| = 10|By}, and so f(2m) = 10f(2m — 1).

Comment. This solution works for all even bases b, and the result is f(2m) = bf(2m~1).

Solution 2. We will use the notation in Solution 1. For a 2m-tuple (ao, ..., am-1) of
integers, we consider the following property:

2m—1
(ag,-..,a2m-1) can be permuted so that Z (-1)!a; =0 (mod 11). (%)
1=0
It is easy to verify that
(ao, ..., G2m—1) satisfies (x) <= (ag+k,...,aom-1 + k) satisfies () (1)
for all integers k, and that
(@o, ..., 02m-1) satisfies (x) <= (kao,...,kagm-1) satisfies (x) (2)

for all integers k£ # 0 (mod 11).

For an integer k, denote by (k) the nonnegative integer less than 11 congruent to k
modulo 11.

For a fixed j € {0,1,...,9}, let k be the unique integer such that k£ € {1,2,...,10} and
(j+ 1k =1 (mod 11).

Suppose that [agm_1---a1j] € Ao, that is, (agm-1,...,a1,7) satisfies (x). From (1) and
(2), it follows that ((agm-1+ 1)k —1,..., (a1 + 1)k — 1,0) also satisfies (*). Putting b; =
<(a,~ + 1)k> — 1, we have [b2m_1 v bl] € Bo.

For any j € {0,1,...,9}, we can reconstruct [azm-—1 . ..a1J] from [byy,_; -+~ b1]. Hence we
have |Ag| = 10|By|, and so f(2m) = 10f(2m — 1).
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Geometry

G1. Let ABCD be a cyclic quadrilateral. Let P, ¢}, R be the feet of the perpendiculars
from D to the lines BC, CA, AB, respectively. Show that PQ = QR if and only if the
bisectors of ZABC and ZADC' are concurrent with AC.

Solution 1.

It is well-known that P, @), R are collinear (Simson’s theorem). Moreover, since ZDPC
and ZDQC are right angles, the points D, P, @, C are concyclic and so ZDCA = ZDPQ =
ZDPR. Similarly, since D, @, R, A are concyclic, we have ZDAC = ZDRP. Therefore
ADCA ~ ADPR.

Likewise, ADAB ~ ADQP and ADBC ~ ADRQ. Then

DA DR DB-% QR BA
DC  DP DB-£¢  PQ BC

Thus PQ = QR if and only if DA/DC = BA/BC.

Now the bisectors of the angles ABC and ADC divide AC in the ratios of BA/BC and
DA/DC, respectively. This completes the proof.

Solution 2. Suppose that the bisectors of ZABC and ZADC meet AC at L and M,
respectively. Since AL/CL = AB/CB and AM/CM = AD/CD, the bisectors in question
Con i 9, © Copyright: The IMO Compendium Group,
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meet on AC if and only if AB/CB = AD/CD, that is, AB-CD = CB - AD. We will prove
that AB-CD = CB - AD is equivalent to PQ = QR.

Because DP 1 BC, DQ 1 AC, DR 1L AB, the circles with diameters DC and DA
contain the pairs of points P, @ and @), R, respectively. It follows that ZPDQ is equal
to v or 180° — v, where v = LZACB. Likewise, ZQDR is equal to o or 180° — «, where
a = ZCAB. Then, by the law of sines, we have PQ} = CDsinvy and QR = ADsin «. Hence
the condition PQ = QR is equivalent to CD/AD = sin a/sin 7.

On the other hand, sina//siny = CB/AB by the law of sines again. Thus PQ = QR if
and only if CD/AD = CB/AB, which is the same as AB-CD =CB - AD.

Comment. Solution 2 shows that this problem can be solved without the knowledge of
Simson’s theorem.
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G2. Three distinct points A, B, C are fixed on a line in this order. Let I' be a circle passing
through A and C whose centre does not lie on the line AC. Denote by P the intersection
of the tangents to I' at A and C. Suppose I' meets the segment PB at ). Prove that the
intersection of the bisector of ZAQC and the line AC does not depend on the choice of T

Solution 1.

S
Suppose that the bisector of ZAQC intersects the line AC and the circle I" at R and S,
respectively, where S is not equal to Q).

Since AAPC is an isosceles triangle, we have AB : BC = sin ZAPB : sin ZCPB.
Likewise, since AASC' is an isosceles triangle, we have AR : RC = sin ZASQ : sin ZCSQ.

Applying the sine version of Ceva’s theorem to the triangle PAC and @, we obtain

sin ZAPB : sin ZCPB = sin ZPAQ sin ZQCA : sin ZPCQ sin ZQAC.

The tangent theorem shows that ZPAQ = LASQ = ZQCA and ZPCQ = ZCS5Q =
ZQAC.

Hence AB : BC = AR? : RC?, and so R does not depend on T.
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Solution 2.

P(0,1/p)

M(0,—p — /1 +p?)

Let R be the intersection of the bisector of the angle AQC and the line AC.

We may assume that A(—1,0), B(b,0), C(1,0), and T': 2% + (y + p)?2 = 1 + p?. Then
P(0,1/p).

Let M be the midpoint of the largest arc AC. Then M (0, —-p—+/1+ p2). The points
Q, R, M are collinear, since ZAQR = ZCQR.

Because PB: y = —z/pb+ 1/p, computation shows that

Q<(1 + p?)b — pb/(1 + p?)(1 — ?) —p(1 —b%) + /(1 +p?)(1 — b2))

1 + p2b? ’ 1 + p2b?
so we have
QP /14 p?
BQ pi-&
Since
MO  p++14p2 p
PM  lip+/1+p 1+p*
we obtain

OR MO QP D V1i+p® 1
RB~ PM BQ /1+p p/1-02 1-B2
Therefore R does not depend on p or I'.
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G3. Let ABC be a triangle and let P be a point in its interior. Denote by D, E, F the
feet of the perpendiculars from P to the lines BC, C A, AB, respectively. Suppose that

AP? 4+ PD?* = BP? + PE? = CP? + PF2.

Denote by 14, Ig, I the excentres of the triangle ABC'. Prove that P is the circumcentre
of the triangle I4Iglc.

Solution. Since the given condition implies
0= (BP?>+ PE?) — (CP? + PF?) = (BP?* - PF?) — (CP? - PE? = BF? — CE?,
we may put x = BF = CE. Similarly we may put y = CD = AF and z = AE = BD.

If one of three points D, E, F' does not lie on the sides of the triangle ABC, then this
contradicts the triangle inequality. Indeed, if, for example, B, C', D lie in this order, we have
AB+ BC = (z+y)+ (2 —y) =z + 2z = AC, a contradiction. Thus all three points lie on
the sides of the triangle ABC.

Puttinga = BC,b=CA,c=ABands=(a+b+c¢)/2, wehavez =s5—a,y=5—b,
z =s—c Since BD = s —cand CD = s — b, we see that D is the point at which the
excircle of the triangle ABC opposite to A meets BC. Similarly E and F are the points at
which the excircle opposite to B and C meet C A and AB, respectively. Since both PD and

I,D are perpendicular to BC, the three points P, D, I4 are collinear. Analogously P, E,
Ig are collinear and P, F', I¢ are collinear.

The three points I4, C, Ig are collinear and the triangle PI,[p is isosceles because
LPI4C = LPIgC = £C/2. Likewise we have PI4 = PIy and so PI4 = PIg = PI.. Thus
P is the circumcentre of the triangle I4Iglc.

Comment 1. The conclusion is true even if the point P lies outside the triangle ABC.

Comment 2. In fact, the common value of AP? + PD? BP? + PE? CP?+ PF? is equal
to 8R? — 5%, where R is the circumradius of the triangle ABC and s = (BC + CA + AB)/2.
We can prove this as follows:

Observe that the circumradius of the triangle I4Iglc- is equal to 2R since its orthic
triangle is ABC. It follows that PD = PI, — DI, = 2R — r4, where 74 is the radius of the

excircle of the triangle ABC opposite to A. Putting rp and r¢ in a similar manner, we have
PE =2R —rg and PF = 2R — rc. Now we have

AP?+ PD? = AE®> + PE* + PD* = (s — ¢)> + (2R — r5)? + (2R — r ).

Since
(2R —r14)> =4R®> —4Rr, + 12
2
—4R? _ 4. abc _area(AABC) N area(AABC)
4area(AABC) s—a s —a

(s = b)(s — ¢) — abc
s—a
= 4R? + bc — §*
and we can obtain (2R — rg)% = 4R? + ca — s? in a similar way, it follows that
AP?+ PD? = (s — ¢)® + (4R? + ca — 5?) + (4R? 4+ bc — s%) = 8R? — &

—4R? 4+ °
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G4. LetI'y, I'y, I's, I'y be distinct circles such that I'y, I'; are externally tangent at P, and
[y, I'y are externally tangent at the same point P. Suppose that I'; and I'y; Ty and I's; '3
and I'y; I'y and I'; meet at A, B, C, D, respectively, and that all these points are different
from P.

Prove that

Solution 1.

Define 64, ..

AB-BC _ PB?
AD-DC  PD?

Figure 1

Let @ be the intersection of the line AB and the common tangent of I'; and I's. Then

ZAPB = /APQ + £ZBPQ = £/PDA+ ZPCB.

., g as in Figure 1. Then

0; + 03 + LAPB = 0y + 05 + 05 + 05 = 180°. (1)

Similarly, /ZBPC = Z/ZPAB + /PDC and

04+ 05 + 6, + 6; = 180°. (2)

Multiply the side-lengths of the triangles PAB, PBC, PCD, PAD by PC-PD, PD-PA,
PA-PB, PB - PC, respectively, to get the new quadrilateral A'B'C'D’ as in Figure 2.

Co, e
Ty, € I
e, ‘1?!‘12

WWW.imo.org. yu
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D' DA-PB.-PC A

PB-PC-PD

CD.PA-PB

PD.PA-PB

C’ BC-PD-PA B

Figure 2
(1) and (2) show that A'D’ || B'C' and A'B’ || C'D’'. Thus the -quadrilateral A’B'C’'D’
is a parallelogram. It follows that A'B’' = C'D' and A'D' = C'B’, that is, AB- PC - PD =
CD-PA-PBand AD-PB.-PC = BC - PA- PD, from which we see that

AB-BC _ PB?
AD.-DC ~ PD?

Solution 2. Let Oy, O, O3, O4 be the centres of I'y, 'y, I's, Iy, respectively, and let A’,
B', C', D' be the midpoints of PA, PB, PC, PD, respectively. Since I';, I'; are externally
tangent at P, it follows that O;, Os, P are collinear. Similarly we see that Oy, Oy, P are
collinear.

Put 91 == 4040102, 92 = 4010203, 03 = 4020304, 04 = 4030401 and ¢1 = ZP0104,
¢y = LPO,03, ¢35 = LPO30,, ¢4 = LP0O4O;. By the law of sines, we have

0102 : 0103 = sin ¢3 : sin 02, 0304 . 0204 = sin ¢2 : sin 03,
0304 : 0103 = sin ¢ : sin by, 0103 : O304 = sin ¢4 : sin b,.
Since the segment PA is the common chord of I'; and 'y, the segment PA’ is the altitude

from P to 0,0,. Similarly PB’, PC’, PD' are the altitudes from P to 0,03, O304, 040,
respectively. Then O,, A’, P, D' are concyclic. So again by the law of sines, we have

D'A": PD' =sin#, : sin ¢;.
© Copyright: The IMO Compendium Group,
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Likewise we have
A'B': PB' =sinf, :sing,, B'C':PB =sinf;:sing;, C'D':PD' =sinb, : sin ¢,.

Since A'B' = AB/2, B'C' = BC/2, C'D' = CD/2, D'A' = DA/2, PB' = PB/2, PD' =
PD/2, we have
AB-BC PD* _A'B'-B'C' PD” sinf,sinfssin ¢;sin ¢,
AD-DC PB? A'D'-D'C' PB?  sin ¢, sin @ sin b, sin 6,
0,05 0,04 0,0, 0304
T 0.0, 050, 0,0, 0,05

1

and the conclusion follows.

Comment. It is not necessary to assume that I'y, I's and T's, I'y are ezternally tangent.
We may change the first sentence in the problem to the following:

Let 'y, Iy, I's, T'y be distinct circles such that I'y, I'3 are tangent at P, and I'y, I'4
are tangent at the same point P.

The following two solutions are valid for the changed version.

Solution 3.

Iy

!

O3

I3

Let O; and r; be the centre and the signed radius of [';, ¢ = 1,2,3,4. We may assume

that r; > 0. If O, O; are in the same side of the common tangent, then we have r; > 0;
otherwise we have r3 < 0.

Put 8 = ZO,PO,;. We have ZO;PO;,; = 6 or 180° — 6, which shows that
sin ZOiPOH.l = sin§. (1)
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Since PB 1 0,03 and APO,03 = ABO,03, we have

1
. 0203 -PB = area(APOzOg) = -;— . P02 . POg -8inf = §|T2H’I'3|Sin€.

N | =

1
2
It follows that

2|ra||r3|sin @
PB= ———. 2
0.0, (2)

Because the triangle O, AB is isosceles, we have

AB = 2|r,|sin ZA;)?B . (3)

Since Z0109P = £L0;05A and Z030,P = £030,B, we have
sin(ZAQO;B/2) = sin Z0,0,03.
Therefore, keeping in mind that
% - 010, - 0,03 - sin L010,0; = area(A010,03) = —;— - 0103 - POy - sin @
= Sir = rollrafsind,
we have

1 — r3||r2|sin9

— ol
AB = 2|T2| 0102 ) 0203

by (3).

Likewise, by (1), (2), (4), we can obtain the lengths of PD, BC, CD, DA and compute
as follows:

AB .- BC . 2[7"1 - 7‘3|7‘% sin 6 ) 2|7”2 — r4|r§ sin @ ] 0304 . 0401 0401 . 0102
CD-DA 0102 . 0203 0203 . 0304 2|7‘1 - 7‘3|'I“‘Z‘ sin 6 2[7‘2 - 7‘4|7‘% sin @

_(2|ra|lrs|sin®\? (0,0, \?
—( 0203 ) (2|r4||r1|sin9)
_ PB?
- PD*

Solution 4. Let /; be the common tangent of the circles I'; and I's and let I; be that of [’
and I'y. Set the coordinate system as in the following figure.
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Iy

I

We may assume that

[y: 2?2 +y% + 2axsinf — 2aycosd = 0, Ty: 2%+ y? + 2bzsin§ + 2by cosf = 0,
Ts: 22 + y% — 2czsinf + 2cy cos = 0, Ty: 2% +y* — 2dzsinf — 2dy cosf = 0.

Simple computation shows that

4 (_ 4ab(a +b)sinfcos®6  4ab(a — b)sin® f cos 0)
a? + b2+ 2abcos20 °  a? + b? + 2abcos 20
4bc(b — c)sinfcos?@  4be(b+c) sin” 0 cos ¢
( b2 + c2 — 2bccos20 ’ b2 + ¢? — 2bccos 26 )
(4 ¢+ d)sinfcos?f 4cd(c — d)sin® 6 cos 0)

oy

Q

c? + d2 +2cdcos28 ' ¢+ d? + 2cd cos 20
_4da(d — a)sinfcos’§ 4da(d + a)sin 20 cosb
d? + a2 2dacos20 ' d?+ a? — 2dacos20 )
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Slightly long computation shows that

4b?|a + c|sin @ cos 0

AB = )

v/ (a? + b2 + 2ab cos 20) (b2 + ¢ — 2bc cos 26)
BC — 4¢?|b + d| sin 6 cos 0

/(B2 + ¢ — 2bccos 20)(c? + d? + 2¢d cos 26)
oD - 4d?|c + a|sinfcos §

V(2 + & + 2cd cos 20)(d? + a? — 2da cos 20)
DA = 4a?|d + b|sin 6 cos 6

/(@2 + a? — 2da cos 20)(a? + b2 + 2ab cos 20)

which implies
AB-BC _ b*c*(d? 4 a® — 2da cos 26)

AD-DC ~— d2a?(b? + c* — 2bccos 20)

On the other hand, we have

4|d||a| sin 6 cos 6

po - 41b||c| sin 6 cos 6
Vd% + a2 — 2dacos 26’

"~ Vb2 + 2 — 2bccos 20

and QD=

which implies
MB?  bc*(d® + a® — 2da cos 20)

MD?  d2a2(b2 + c2 — 2bccos 26)

Hence we obtain
AB-BC BB’

AD-DC ~ PD*
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G5. Let ABC be an isosceles triangle with AC = BC, whose incentre is I. Let P be
a point on the circumcircle of the triangle AIB lying inside the triangle ABC. The lines
through P parallel to CA and CB meet AB at D and E, respectively. The line through P
parallel to AB meets CA and CB at F and G, respectively. Prove that the lines DF and
EG intersect on the circumcircle of the triangle ABC.

Solution 1.

The corresponding sides of the triangles PDE and CFG are parallel. Therefore, if DF
and EG are not parallel, then they are homothetic, and so DF, EG, CP are concurrent at
the centre of the homothety. This observation leads to the following claim:

Claim. Suppose that C'P meets again the circumcircle of the triangle ABC' at Q. Then
@ is the intersection of DF and EG.

Proof. Since LZAQP = ZABC = £BAC = ZPFC, it follows that the quadrilateral
AQPF is cyclic, and so ZFQP = ZPAF. Since ZIBA= /CBA/2 = LCAB/2 = LIAC,
the circumcircle of the triangle AIB is tangent to CA at A, which implies that ZPAF =
ZDBP. Since LQBD = LQCA = ZQPD, it follows that the quadrilateral DQBP is
cyclic, and so ZDBP = /ZDQP. Thus ZFQP = /PAF = /DBP = /DQP, which
implies that F', D, Q are collinear. Analogously we obtain that G, E, Q are collinear. [

Hence the lines DF, EG, CP meet the circumcircle of the triangle ABC at the same
point.
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Solution 2.

'01(0’ /B)

Set the coordinate system so that A(—1,0), B(1,0), C(0,c). Suppose that I(0, ).

Since .
area(AABC) = E(AB + BC + CA)a,

we obtain c
a= Y
Suppose that O;(0, §) is the centre of the circumcircle I'; of the triangle AIB. Since
(B—a)=0,I"=0,A =1+ 52,
we have f = —1/cand so I'1: 22 + (y + 1/¢)? = 1 + (1/c)2.

Let P(p, Q) Since D(p - Q/ca 0)> E(p + Q/ca O)a F(q/c - 1a Q)a G(—Q/C + 1,Q), it follows
that the equations of the lines DF' and EG are

q q q q
=gz [p-2= and y=————\z—(p+2)],
Y 2f—p—l< (p C)) Y —%“—p+1< <p C))

respectively. Therefore the intersection @ of these lines is ((q —o)p/(29 — ¢),q¢*/(2q — c))

Let O2(0,7) be the circumcentre of the triangle ABC. Then v = (¢ — 1)/2¢ since
1+ ’)’2 = 02A2 = 0202 = (")’ — 6)2.

Note that p? + (g + 1/c)? = 1 + (1/c)? since P(p,q) is on the circle ;. It follows that

2 2 2 2 2 2
s _(q-—c 2 q _c—l [+ 2
029" = <2q—c) P +(2q—c 2c ) __< 2c = 0:C%

which shows that @ is on the circumcircle of the triangle ABC.

Comment. The point P can be any point on the circumcircle of the triangle AIB other
than A and B; that is, P need not lie inside the triangle ABC.
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G6. Each pair of opposite sides of a convex hexagon has the following property:

the distance between their midpoints is equal to \/§/2 times the sum of their
lengths.

Prove that all the angles of the hexagon are equal.

Solution 1. We first prove the following lemma:

Lemma. Consider a triangle PQR with ZQPR > 60°. Let L be the midpoint of QR.
Then PL < v/3QR/2, with equality if and only if the triangle PQR is equilateral.

Proof.

LT At et T

Let S be the point such that the triangle QRS is equilateral, where the points P and
S lie in the same half-plane bounded by the line QR. Then the point P lies inside the
circumcircle of the triangle QRS, which lies inside the circle with centre L and radius
V3 QR/2. This completes the proof of the lemma. |
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The main diagonals of a convex hexagon form a triangle though the triangle can be
degenerated. Thus we may choose two of these three diagonals that form an angle greater
than or equal to 60°. Without loss of generality, we may assume that the diagonals AD and
BE of the given hexagon ABCDEF satisfy ZAPB > 60°, where P is the intersection of
these diagonals. Then, using the lemma, we obtain

MN = ‘?(ABJFDE) > PM + PN > MN,

where M and N are the midpoints of AB and DF, respectively. Thus it follows from the
lemma that the triangles ABP and DEP are equilateral.

Therefore the diagonal C'F forms an angle greater than or equal to 60° with one of the
diagonals AD and BE. Without loss of generality, we may assume that ZAQF > 60°, where
@ is the intersection of AD and CF. Arguing in the same way as above, we infer that the
triangles AQF and CQD are equilateral. This implies that ZBRC = 60°, where R is the
intersection of BE and C'F. Using the same argument as above for the third time, we obtain
that the triangles BCR and EF R are equilateral. This completes the solution.

Solution 2. Let ABCDEF be the given hexagon and let @ = ﬂ?’, b= B?, o f= ﬂ

Thus we obtain

m:-zl-(b—l-c—-e—f). (1)

From the given property, we have
\/_
\M E3|— (la| +|d]) > —2—|a d|. (2)

Setx=a—~d,y=c—f, z=e—b. From (1) and (2), we obtain

ly — 2| > V3|, (3)
Similarly we see that

2 — | > V3ly|, | (4)

|z -yl > V3z|. (5)
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Note that

(3) < |y|* -2y z+|2|* > 3|z,
4) <= |z’ -2z -z +|z> > 3Jy|%,
(5) < |zf* -2z -y + |y > 3lz|%

By adding up the last three inequalities, we obtain
~lz* ~ |y~ 2"~ 2y 2 - 22- 2 -2z -y >0,

or —|x +y+ 2> > 0. Thus ¢ +y + z = 0 and the equalities hold in all inequalities above.
Hence we conclude that

r+y+2=0,
ly—z=V3lz|, ald]a=,
|z —2|=V3lyl, <l flly,
z -yl =V3lz|, e|b] =

Suppose that PQR is the triangle such that 1763 =z, Cﬁ =y, Iﬂ’) = z. We may
assume ZQPR > 60°, without loss of generality. Let L be the midpoint of QR, then
PL = |z —z|/2 = V3|y|/2 = V3QR/2. 1t follows from the lemma in Solution 1 that the
triangle PQR is equilateral. Thus we have ZABC = ZBCD =--- = /FAB = 120°.

Comment. We have obtained the complete characterisation of the hexagons satisfying the
given property. They are all obtained from an equilateral triangle by cutting its ‘corners’ at
the same height.
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G7. Let ABC be a triangle with semiperimeter s and inradius r. The semicircles with

diameters BC, CA, AB are drawn on the outside of the triangle ABC. The circle tangent

to all three semicircles has radius t. Prove that

7)
T.

S
<t<-o+(1-X2
—2+( 2

[NV

Solution 1.

DI

Let O be the centre of the circle and let D, E, F' be the midpoints of BC, CA, AB,
respectively. Denote by D', E’, F' the points at which the circle is tangent to the semicircles.
Let d', €/, f' be the radii of the semicircles. Then all of DD', EE', FF’ pass through O, and
s=d+¢e+ f.

Put

s, _—d+e+f s _,_d-e+/f s , _d+e—f

d= d = ——", 6—2 e = 5 ,f—2 f= 5 .
Note that d + e + f = s/2. Construct smaller semicircles inside the triangle ABC with
radii d, e, f and centres D, E, F. Then the smaller semicircles touch each other, since
d+e=f=DE, e+ f=d =FEF, f+d=¢€ = FD. In fact, the points of tangency are
the points where the incircle of the triangle DEF touches its sides.

Suppose that the smaller semicircles cut DD', EE', FF' at D", E", F", respectively.
Since these semicircles do not overlap, the point O is outside the semicircles. Therefore
D'O>D'D" andsot>s/2. Putg=1t—s/2.

Clearly, OD" = OE" = OF" = g. Therefore the circle with centre O and radius g
touches all of the three mutually tangent semicircles.

PRIV S S l+l+1+12
d2 e f2 g2 2\d e f g/~
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Proof. Consider a triangle PQR and let p = QR, ¢ = RP, r = PQ. Then

—p2 2 2
cos ZQPR = o il
2qr
and
sin QPR = YP I+ NP +a+ ) —a+7)p+q—1)
2qr :
Since

cos LZEDF = cos(LODE + ZODF) = cos ZODE cos ZODF — sin ZODE sin ZODF,

we have
d® +de+df —ef (d®+de+dg—eg)(d®+df + dg — fg)
d+e)d+f) (d+9)*(d+e)(d+ f)

_4dg\/(d+e+g)(d+ f+g)ef
(d+9)2(d+e)d+f)

which simplifies to

(d+g)<$+é+%+§) —2<§+1+-§) :—2\/(d+e+92;d+f+g)_

Squaring and simplifying, we obtain
1+1'+1+12_41+1+1 1,1 1
d e f g) “\de df dg ef fg

_<11112 1,1 1.1
- E+E+?+E)_< EEE))

from which the conclusion follows. |

Solving for the smaller value of g, i.e., the larger value of 1 /g, we obtain

L S D SN CY E LIS S R 1+1 !
g d e f d e f f2
1

Comparing the formulas area(ADEF) = area(AABC)/4 = rs/4 and area(ADEF) =
V(d+ e+ f)def, we have

def

2

[N R

All we have to prove is that

T 1
— =2++3.
29 2 V3
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Since

T def 1 1 1 d+e+ f T+y+z
_:1/—-—— s 2‘/—— = + 2,
2¢ d+e+f<d+e+f+ de f VIY +yz+ 22

where z = 1/d, y = 1/e, z = 1/ f, it suffices to prove that

(z+y+2)? >3
Ty +yz+zx T
This inequality is true because
1
(z+y+2)?°—3xy+yz+21) = 5((a:~y)2+(y—z)2+(z—x)2) > 0.

Solution 2. We prove that ¢t > s/2 in the same way as in Solution 1. Put g =t — s/2.

(—6,0)

Now set the coordinate system so that E(—e,0), F(f,0), and the y-coordinate of D is
positive. Let 'y, I'e, I'y, 'y be the circles with radii d, e, f, g and centres D, E, F, O,
respectively. Let I';;; be the incircle of the triangle DEF. Note that the radius of I, is
r/2.

Now consider the inversion with respect to the circle with radius 1 and centre (0, 0).
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I, Ty

!
1/r P'/z

N

—2« 28

Let 'y, Iy, T, T, I"T/2 be the images of ['y, I'¢, Ty, I'y, ', /o, respectively. Set a = 1/4e,
B =1/4f and R = o+ . The equations of the lines I",, I, and I"T/2 are r = —2a, z = 203
and y = 1/r, respectively. Both of the radii of the circles I'; and ', are R, and their centres
are (—a+ f3,1/r) and (—a + B8,1/r + 2R), respectively.

Let D be the distance between (0, 0) and the centre of I',. Then we have

1 1 2R
" D-R D+R D*-R¥”

29

which shows g = R/(D? — R?).

What we have to show is g < (1 —+/3/2)r, that is (4 + 2v/3)g < r. This is verified by
the following computation:

r—(4+2\/§)g=r—(4+2\/§)Dzlj'R2 =D21R2((D2-—R2)— (4+2\/§)%R>
_ ——Dzim((%+2R>2+(a—5)2—R2— (4+2\/§)%R)
T 1 2 2
=ﬂ(3(R—E> +(a—ﬂ))
>0
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Number Theory

N1. Let m be a fixed integer greater than 1. The sequence x4, z;, T3, ... is defined as
follows: .
2, ifo<i<m-1;
T =
: Z;'.l—_-l Ti—j,y if ¢ > m.

Find the greatest k& for which the sequence contains k consecutive terms divisible by m.

Solution. Let r; be the remainder of z; mod m. Then there are at most m™ types of m-
consecutive blocks in the sequence (r;). So, by the pigeonhole principle, some type reappears.
Since the definition formula works forward and backward, the sequence (r;) is purely periodic.

Now the definition formula backward z; = x4, — Z;":"ll Zi+; applied to the block
(roy---,Tm—1) produces the m-consecutive block 0,...,0,1. Together with the pure peri-
1
me
odicity, we see that maxk > m — 1.
On the other hand, if there are m-consecutive zeroes in (r;), then the definition formula
and the pure periodicity force r; = 0 for any ¢ > 0, a contradiction. Thus maxk =m — 1.
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N2. Each positive integer a undergoes the following procedure in order to obtain the num-
ber d = d(a):

(i) move the last digit of a to the first position to obtain the number b;
(ii) square b to obtain the number c;

(iii) move the first digit of ¢ to the end to obtain the number d.

(All the numbers in the problem are considered to be represented in base 10.) For example,
for a = 2003, we get b = 3200, ¢ = 10240000, and d = 02400001 = 2400001 = d(2003).

Find all numbers a for which d(a) = a?.

Solution. Let a be a positive integer for which the procedure yields d = d(a) = a®. Further
assume that a has n + 1 digits, n > 0.

Let s be the last digit of @ and f the first digit of c. Since (x---*s)2=a?=d=%---*f
and (s*---%)2 =% = c = f*---x, where the stars represent digits that are unimportant at
the moment, f is both the last digit of the square of a number that ends in s and the first
digit of the square of a number that starts in s.

The square a? = d must have either 2n+ 1 or 2n + 2 digits. If s =0, then n # 0, b has n
digits, its square c has at most 2n digits, and so does d, a contradiction. Thus the last digit
of a is not 0.

Consider now, for example, the case s = 4. Then f must be 6, but this is impossible,
since the squares of numbers that start in 4 can only start in 1 or 2, which is easily seen
from

160---0=(40---0)> < (4% ---%)2 < (50---0)2 =250---0.

Thus s cannot be 4.
The following table gives all possibilities:
s |

f = last digit of (---s)*
f = first digit of (s---)2

1 | 2 | 3|45 |6 |
1 9
1,2

1
. 314,56,7,8(9,1

Thus s =1, s = 2, or s = 3 and in each case f = s2. When s is 1 or 2, the square ¢ = b% of
the (n + 1)-digit number b which starts in s has 2n + 1 digits. Moreover, when s = 3, the
square ¢ = b? either has 2n + 1 digits and starts in 9 or has 2n + 2 digits and starts in 1.
However the latter is impossible since f = s2 = 9. Thus ¢ must have 2n + 1 digits.

Let a = 10z + s, where z is an n-digit number (in case z = 0 we set n = 0). Then

b=10"s + z,
c=10""s% + 2. 10"sz + 22,
d=10(c— 10™7'f) + f = 10*"*1s? + 20 - 10"sz + 10z% — 10™f + f,

where m is the number of digits of ¢c. However, we already know that m must be 2n + 1 and
f =52 so
d =20-10"sz + 10z% + s
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and the equality a? = d yields

i.e.,
a=6:--63 or a=4---42 or a=2---21,
n n n
for n > 0. The first two possibilities must be rejected for n > 1, since a? = d would have
2n + 2 digits, which means that ¢ would have to have at least 2n + 2 digits, but we already
know that ¢ must have 2n + 1 digits. Thus the only remaining possibilities are

a=3 or a=2 or a=2---21,

n

for n > 0. It is easily seen that they all satisfy the requirements of the problem.

© Copyright: The IMO Compendium Group,
Mathematical Society of Serbia,
D. Djukic, V. Jankovic, 1. Matic, N. Petrovic,
WWW.1mo.org.yu

WWW.imo.org. yu



54

N3. Determine all pairs of positive integers (a, b) such that

a2

2ab%2 — b3 +1

is a positive integer.

Solution. Let (a,b) be a pair of positive integers satisfying the condition. Because k =
a?/(2ab* —b*+1) > 0, we have 2ab®> — b3 +1 > 0, @ > b/2—1/2b%, and hence a > b/2. Using
this, we infer from k£ > 1, or a? > b%(2a — b) + 1, that a? > b%*(2a — b) > 0. Hence

a>b or 2a=4%b. (%)

Now consider the two solutions a;, a; to the equation
a® — 2kb?a+ k(® — 1) =0 ()

for fixed positive integers k and b, and assume that one of them is an integer. Then the
other is also an integer because a; + a; = 2kb%. We may assume that a; > a,, and we have
a; > kb? > 0. Furthermore, since a;a; = k(b® — 1), we get

KB —1) _ k(B —1)

< =
0<a a kb2

<b.

Together with (), we conclude that a; = 0 or a; = b/2 (in the latter case b must be even).
If ay = 0, then 4® — 1 =0, and hence a; = 2k, b = 1.
If ay = b/2, then k = b%/4 and a; = b*/2 — b/2.

Therefore the only possibilities are
(a,b) = (2,1) or ([,21) or (8I*—1,20)
for some positive integer {. All of these pairs satisfy the given condition.

Comment 1. An alternative way to see (x) is as follows: Fix a > 1 and consider the
function fo(b) = 2ab®—b*+1. Then f, is increasing on [0, 4a/3] and decreasing on [4a/3, 00).
We have

fa(a) = a® +1 > a?,
fa(2a — 1) = 4a* — 4a + 2 > a2,
fa(2a+1) = —4a® — 4a < 0.

Hence if b > a and a?/f,(b) is a positive integer, then b = 2a.

Indeed, if a < b < 4a/3, then f,(b) > fu(a) > a?, and so a?/f,(b) is not an integer, a
contradiction, and if b > 4a/3, then

(i) if b>2a+1, then f,(b) < fo(2a + 1) < 0, a contradiction;

(ii) if b < 2a —1, then f4(b) > fu(2a — 1) > a?, and so a2?/f,(b) is not an integer, a
contradiction.
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Comment 2. There are several alternative solutions to this problem. Here we sketch three
of them.

1. The discriminant D of the equation (f) is the square of some integer d > 0: D =
(26%k — b)* + 4k — b* = d°. If e = 2b%k — b = d, we have 4k = b? and a = 2b%k — b/2,b/2.
Otherwise, the clear estimation |d? — e?| > 2e — 1 for d # e implies |4k — b?| > 4b%k — 2b—1.
If 4k — b% > 0, this implies b = 1. The other case yields no solutions.

2. Assume that b # 1 and let s = ged(2a, b3 —1), 2a = su, b —1 = st’, and 2ab? —b*+1 = st.
Then ¢t +t' = ub? and ged(u,t) = 1. Together with st | a?, we have ¢ | s. Let s = rt. Then
the problem reduces to the following lemma:

Lemma. Let b, 7, t, ', u be positive integers satisfying b3 — 1 = rtt’ and t + ¢’ = ub®.
Then r = 1. Furthermore, either one of £ or ¢’ or u is 1.

The lemma is proved as follows. We have b® — 1 = rt(ub? — t) = rt'(ub® — t'). Since
rt? = rt'” = 1 (mod b%), if 7t> # 1 and 72 # 1, then ¢, > b/\/7. It is easy to see that

unless r =u = 1.
3. With the same notation as in the previous solution, since rt | (b* — 1)2, it suffices to
prove the following lemma:

Lemma. Let b > 2. If a positive integer z = 1 (mod b?) divides (5° — 1)?, then z =1 or
z= (5 —1)2 or (b,z) = (4,49) or (4,81).

2To prove2 this lemma, let p, ¢ be positive integers with p > ¢ > 0 satisfying (b° — 1) =
(pb* + 1)(gb* + 1). Then
bt = 2b+ p+ q + pgb®. (1)

A natural observation leads us to multiply (1) by ¢b? — 1. We get
(a(pg — b°) +1)b* = p — (g + 2b)(gb* - 1).
Together with the simple estimation

p— (g + 2b)(gb? — 1)

~3< i

<1,
the conclusion of the lemma, follows.

Comment 3. The problem was originally proposed in the following form:

Let a, b be relatively prime positive integers. Suppose that a?/(2ab? — b® + 1)
is a positive integer greater than 1. Prove that b = 1.
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N4. Let b be an integer greater than 5. For each positive integer n, consider the number

Ty =11:--122..-25,
TW—/
written in base b.
Prove that the following condition holds if and only if b = 10:

there exists a positive integer M such that for any integer n greater than M, the
number z,, is a perfect square.

Solution. For b = 6,7, 8,9, the number 5 is congruent to no square numbers modulo b, and
hence z, is not a square. For b = 10, we have z, = ((10" + 5)/3)2 for all n. By algebraic
calculation, it is easy to see that z, = (b" + o™+ +3b— 5)/(b— 1).

Consider now the case b > 11 and put y, = (b — 1)z,. Assume that the condition in
the problem is satisfied. Then it follows that y,y,.1 is a perfect square for n > M. Since
b2 + b+ 3b — 5 < (b™ + b/2)?, we infer

n b 2 n+1 b 2 2n+1 bn+1 (b + 1) b2 2
YnUnt1 < (b + 5) (b + 5) = (b + —2'—— + Z) . (1)
On the other hand, we can prove by computation that
P+ 1 2
YnUn+1 > <b2n+1 + _%__t—l - b3) . (2)

From (1) and (2), we conclude that for all integers n > M, there is an integer a, such

that " ) \
nti(b+1
YnUnt1 = <b2"+1 + #_——l + an) and —-b<a, < T (3)

It follows that 5" | (a2 — (3b — 5)%), and thus a, = +(3b — 5) for all sufficiently large n.
Substituting in (3), we obtain a, = 3b — 5 and

8(3b — 5)b + b?(b+ 1)? = 4b + 4(3b — 5)(* + 1). (4)

The left hand side of the equation (4) is divisible by b. The other side is a polynomial in
b with integral coefficients and its constant term is —20. Hence b must divide 20. Since
b > 11, we conclude that b = 20, but then z, =5 (mod 8) and hence z, is not a square.
Comment. Here is a shorter solution using a limit argument:

Assume that z,, is a square for all n > M, where M is a positive integer.

For n > M, take y, = /7, € N. Clearly,

b2n
lim &=L =1.
n-00 .’En
Hence "
. b1
lim =1.
nsoo Y,
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On the other hand,
(byn + yn+1)(byn - yn+1) = ben — Tpy1 = b2 4+ 3h% — 2b — 5. (*)

These equations imply

. bvb—1
lim (byn, — Yn+1) = .

n—oo 2

As by, — Yns1 is an integer, there exists N > M such that by, — yn41 = bv/b—1/2 for
any n > N. This means that b — 1 is a perfect square.

If b is odd, then /b — 1/2 is an integer and so b divides by/b — 1/2. Hence using (x), we
obtain b | 5. This is a contradiction.

If b is even, then b/2 divides 5. Hence b = 10.
In the case b = 10, we have z, = ((10™ + 5)/3)% for n > 1.
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N5. An integer n is said to be good if |n| is not the square of an integer. Determine all
integers m with the following property:

m can be represented, in infinitely many ways, as a sum of three distinct good
integers whose product is the square of an odd integer.

Solution. Assume that m is expressed as m = u+ v+ w and uvw is an odd perfect square.
Then u, v, w are odd and because uvw = 1 (mod 4), exactly two or none of them are
congruent to 3 modulo 4. In both cases, we have m = v + v + w = 3 (mod 4).

Conversely, we prove that 4k + 3 has the required property. To prove this, we look for
representations of the form
4k + 3 =2y + yz + 2z.

In any such representations, the product of the three summands is a perfect square. Setting
rz=1+2land y =1 — 2l, we have z = 212 + 2k + 1 from above. Then

zy=1-4° = (),
yz = —41P 4+ 212 — (4k +2) + 2k +1 = g(I),
2z =41 + 21* + (4k + 2)l + 2k + 1 = h(]).

The numbers f(I), g(l), h(l) are odd for each integer ! and their product is a perfect square,
as noted above. They are distinct, except for finitely many {. It remains to note that |g(l)|
and |h(l)| are not perfect squares for infinitely many [ (note that |f({)| is not a perfect square,
unless [ = 0).

Choose distinct prime numbers p, g such that p,q > 4k + 3 and pick ! such that

1+20=0 (mod p), 1+20#0 (mod p?),
1-2l=0 (mod g), 1-21#0 (mod ¢%).

We can choose such [ by the Chinese remainder theorem. Then 2{? + 2k + 1 is not divisible
by p, because p > 4k + 3. Hence |h(l)| is not a perfect square. Similarly, |g(l)| is not a
perfect square.
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N6. Let p be a prime number. Prove that there exists a prime number ¢ such that for
every integer n, the number n? — p is not divisible by g.

Solution. Since (p? —1)/(p—1)=1+p+p*+---+pP 1 =p+1 (mod p?), we can get at
least one prime divisor of (p? — 1)/(p — 1) which is not congruent to 1 modulo p?>. Denote
such a prime divisor by ¢q. This g is what we wanted. The proof is as follows. Assume that
there exists an integer n such that n? = p (mod ¢). Then we have n** = p? = 1 (mod gq)
by the definition of g. On the other hand, from Fermat’s little theorem, n?~! =1 (mod g),
because ¢ is a prime. Since p? { ¢ — 1, we have (p?,q — 1) | p, which leads to n” =1 (mod g).
Hence we have p =1 (mod ¢). However, this implies 1 +p+ -+ p?~! = p (mod ¢). From
the definition of g, this leads to p = 0 (mod ¢), a contradiction.

Comment 1. First, students will come up, perhaps, with the idea that ¢ has to be of the
form pk + 1. Then,

dn n?=p (modg) < p*=1 (mod q),

ie.,
Vn nPZp (modgq) < p*#1 (mod g).

So, we have to find such ¢g. These observations will take you quite naturally to the idea
of taking a prime divisor of p» — 1. Therefore the idea of the solution is not so tricky or
technical.

Comment 2. The prime ¢ satisfies the required condition if and only if ¢ remains a prime
in k = Q(y¢/p). By applying Chebotarev’s density theorem to the Galois closure of k&, we
see that the set of such ¢ has the density 1/p. In particular, there are infinitely many ¢
satisfying the required condition. This gives an alternative solution to the problem.
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N7. The sequence ay, ay, as, ... is defined as follows:

ag = 2, aky1 =202 —1 for k> 0.

Prove that if an odd prime p divides a,, then 2"*+3 divides p? — 1.

Solution. By induction, we show that

2+v3)" +(2-v3)”
. .

ay =

Case 1: 2> = 3 (mod p) has an integer solution

Let m be an integer such that m®> = 3 (mod p). Then (2+m)?" +(2-m)?" =0 (mod p).
Therefore (2+m)(2—m) =1 (mod p) shows that (2+m)?"™" = —1 (mod p) and that 2+m
has the order 2"*? modulo p. This implies 2"*2 | (p — 1) and so 2"*3 | (p? — 1).
Case 2: otherwise

. <o ant+l

Similarly, we see that there exist integers a, b satisfying (2 + \/§) = —1+pa+pbV/3.

Furthermore, since ((1+ \/?_>)an_1)2 = (an +1)(2+ V/3), there exist integers o', b’ satisfying

((1+ \/§)an_1)2n+2 = —1+ pa’ + pb'/3.

Let us consider the set S = {i+5v3|0<1i,j <p-1, (4,5) # (0,0)}. Let I = {a+bV3 |
a=b=0 (mod p)} We claim that for each i + jv/3 € S, there exists an ¢ + j'v/3 € S
satisfying (i +jv/3) (¢ +5'v/3) — 1 € I. In fact, since i — 3j2 # 0 (mod p) (otherwise 3 is a
square mod p), we can take an integer k satisfying k(:2 — 35%) — 1 € I. Then ¢’ + j'v/3 with
i+ 5'V3 — k(i -3 \/§) € I will do. Now the claim together with the previous observation
implies that the minimal r with ((1 + \/g)an_l)r — 1 € I is equal to 2"*3. The claim also
implies that a map f: S — S satisfying (z +j\/$ (1 + \/g)an_l — f(i +j\/?_>) € I for any
i+ jV/3 € S exists and is bijective. Thus [loes® =l,es f(z), sO

(H x) ((@+vB)enr) 1) 1.

zeS
Again, by the claim, we have ((1+ \/g)an_l)pz_l — 1€ I. Hence 23 | (p? - 1).

Comment 1. Not only Case 2 but also Case 1 can be treated by using (1 + \/5) Gn-1. In
fact, we need not divide into cases: in any case, the element (1 + v/3)a,_; = (1+v3)/v2
of the multiplicative group IF;; of the finite field F,2 having p? elements has the order 27+3,
which suffices (in Case 1, the number (1 + \/g)an_l even belongs to the subgroup F » of ]F‘;;,
so 2™ | (p — 1)).

Comment 2. The numbers a; are the numerators of the approximation to v/3 obtained
by using the Newton method with f(z) = z? — 3, 2o = 2. More precisely,

Tky1 =
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where " o
dk:(2+\/§) -(2-v3)"
2v/3

Comment 3. Define f,(z) inductively by

fo(z) ==, feg1(z) = f;c(nr)2 -2 fork>0.

Then the condition p | a, can be read that the mod p reduction of the minimal polynomial
fn of the algebraic integer a = (on+2 + C,;,,IJ,Z over Q has the root 2ag in F,, where (on+2 is a
primitive 2"*2-th root of 1. Thus the conclusion (p? — 1) | 2"*3 of the problem is a part of
the decomposition theorem in the class field theory applied to the abelian extension Q(c),
which asserts that a prime p is completely decomposed in Q(c) (equivalently, f,, has a root
mod p) if and only if the class of p in (Z/2"*2Z)* belongs to its subgroup {1,—1}. Thus
the problem illustrates a result in the class field theory.
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N8. Let p be a prime number and let A be a set of positive integers that satisfies the
following conditions:
(i) the set of prime divisors of the elements in A consists of p — 1 elements;

(ii) for any nonempty subset of A, the product of its elements is not a perfect p-th power.

What is the largest possible number of elements in A?

Solution. The answer is (p — 1)2. For simplicity, let 7 = p — 1. Suppose that the prime
numbers p, ..., p, are distinct. Define

-1 1
Bi = {p‘i)p?-i-lap?p-*-la s ,Pgr ot }’

and let B =|J;_, B;. Then B has r? elements and clearly satisfies (i) and (ii).

Now suppose that |A| > r%2 + 1 and that A satisfies (i) and (ii). We will show that a
(nonempty) product of elements in A is a perfect p-th power. This will complete the proof.

Let pi, ..., p, be distinct prime numbers for which each ¢ € A can be written as t =
pit - pir. Take ty,...,t241 € A, and for each ¢, let v; = (a;1, @42, . . ., air) denote the vector
of exponents of prime divisors of t;, We would like to show that a (nonempty) sum of v; is
the zero vector modulo p.

We shall show that the following system of congruence equations has a nonzero solution:

2+1
F1 = Z (1,,'1.’17: =0 (mod p),
=1

r241
F,= Z a;2z; =0 (mod p),
=1

r241

F, = Z a;;z; =0 (mod p).
i=1

If (zy,...,%,241) is a nonzero solution to the above system, then, since 7 = 0 or 1 (mod p),
a sum of vectors v; is the zero vector modulo p.

In order to find a nonzero solution to the above system, it is enough to show that the
following congruence equation has a nonzero solution:

F=F+F+---+F =0 (modp). (%)

In fact, because each F] is 0 or 1 modulo p, the nonzero solution to this equation (*) has to
satisfy FT =0for1 <i<r.

We will show that the number of the solutions to the equation (%) is divisible by p. Then
since (0,0,...,0) is a trivial solution, there exists a nonzero solution to (*) and we are done.

We claim that
> F(z1,...,8241) =0 (mod p),
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where the sum is over the set of all vectors (z1,...,Z,24;) in the vector space ]F‘;,2+1 over the
finite field F,. By Fermat’s little theorem, this claim evidently implies that the number of
solutions to the equation (x) is divisible by p.

We prove the claim. In each monomial in F", there are at most r? variables, and there-
fore at least one of the variables is absent. Suppose that the monomial is of the form
byl zi? - xzpk, where 1 < k < r2. Then Y bxitxP? - x*, where the sum is over the same

ik 0
Qg

i » Which is divisible by p. This proves

N 2 _
set as above, is equal to p™ t17F > bmf‘llz

Tiy yeeesTip,
the claim.

a2.-

12 "z

Comment. In general, if we replace p — 1 in (i) with any positive integer d, the answer is
(p — 1)d. In fact, if £ > (p — 1)d, then the constant term of the element (1 —g;)--- (1 — gi)
of the group algebra Q,((,) [(Z/pZ)d] can be evaluated p-adically so we see that it is not
equal to 1. Here g1,...,gx € (Z/pZ)?, Q, is the p-adic number field, and (p is a primitive
p-th root of 1. This also gives an alternative solution to the problem.
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Every M on page 41 in Short-listed Problems and Solutions
should be replaced with P.
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Remarks on the shortlisted geometrical problems, IMO 2003
Waldemar Pompe, Poland

The following theorem is known.

THEOREM. Let ABCD be a convex quadrilateral inscribed in a circle I'. The lines k and [ are
tangent to circle I' at A and C, respectively. Let M be the midpoint of AC and let E be the common
point of the diagonals AC and BD. Then the following conditions are equivalent:

(a) The lines &, ! and BE are concurrent or parallel;

(b) LABE=/MBC (i.e. BE is the symmedian in triangle ABC);

o AE_(4B):
EC BC)’
(d) AB-CD=BC-AD:;
() PQ=QR, where P, Q, R are the feet of the perpendiculars from D to AB, BC, CA, respectively.

REMARKS: Problem G1 is just the equivalence (d) & (e), and problem G2 follows directly from
the implication (a) = (c). Indeed, (c) implies that the ratio AQ:QC (by the notation of G2) does not
depend on the choice of circle I' and the claim follows.

Therefore problems G1 and G2 describe de facto the same geometrical configuration. This configu-
ration was already used in various mathematical olympiads. For example, the implication (a) = (b) was
problem 2 of the final round of the 51-st Polish Mathematical Olympiad (2000). This problem was also
discussed independently during a seminar on euclidean geometry organized by Prof. Toshio Seimiya in
Kawasaki (near Tokyo) two days ago*.

The equivalence (b) < (c) is the well-known characterization of the symmedian in a triangle. Its
generalization quoted below was used as problem 5 of the final round of the 49-th Polish Mathematical
Olympiad (1998). It can be also found in the book of Johnson, Advanced Euclidean Geometry. Moral:
G2 should be (at least theoretically...) known by Polish students.

PROOF. The scheme of the proof looks as follows:
(b) & (c) = (d) & (a) = (b).
The equivalence (d) < (e) is proved in the shortlist, so I don’t write it here.
(b) & (c). We show more general result.
Points E and M lie on the side AC of triangle ABC. Then /ABE = /M BC of and only if
AE AM [ AB\?
EC MC~ (BC)

Proof. Assume that the line through A and parallel to BC meets the lines BE and BM at P and Q,
respectively. Then

AE AM_(AB)2 AP AQw(AB
EC MC \BC BC BC \BC
& (ABP=/AQB & (ABE=/MBC,

2
) & AP -AQ=AB?

which completes the proof.

(c) = (d). We denote by [XY Z] the area of triangle XY Z. The triangles AEB and DEC are similar
and also triangles AED and BEC are similar, which gives
[AEB] (AB)2 q [AED] (AD>2

[DEC] — \DC [BEC]  \BC

*1 had a pleasure to take part in this seminar. Prof. Seimiya showed five different proofs of the implication (a) = (b).

1

Co 15
0"‘1’:,115"1 (o)
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This implies
AEN? [AEB] [AED] (AB\2? [AD\? AE [ AD\?
(EC) ~ [BEC] [DEC] (BC’) ' (DTJ) . whence by () 5= (D_C) '
Now (c) and the last equality give (d).

(d) < (a). Assume first (a) holds. If the lines k, [, BE are parallel, then AB= AD and BC = DC
and the result holds. So assume that the lines k, [, BE meet at P. Then

AB AP CP BC
AD  PD PD CD’
Now assume (d) holds and let

so AB-CD=AD-BC.

AB AD B\

—EE —_ 65 —_— .
Then the points B and D lie on the Appolonius circle {2, whose center lies on the line AC, if A\#£1, or
on the perpendicular bisector of AC, if A=1. The circle § is determined uniquely by the points A and
C and by the value ). Since the circles Q and T have exactly two points in common, it follows from the
shown implication (a) = (d) that the lines k, { and BE must be concurrent or parallel.

(a) = (b). If the lines k, { and BD are parallel, then the result is clear. So assume that all these
three lines meet at P. Let ¢ be a tangent to I" at B and let the line passing through P and parallel to ¢
meet the lines AB and CB at X and Y, respectively. Then

(BAC=(PCY=/(PYC and (BCA=/PAX=/(PXA.
Thus triangles BAC and BY X are similar and P is the midpoint of XY. This gives /ZABE =/MBC.

EXERCISES:

1. Two points A and B lie on the circle I. The tangent lines to I at A and B meet at P. A line

passing through P intersects I' at C' and D. Prove that the tangent lines to I at C and D intersect on
the line AB.

2. Two points A and B lie on the circle T'. The tangent lines to I' at A and B meet at P. A line
passing through the midpoint of AB intersects I" at C and D. Prove that ZAPC = /BPD.

3. Given an acute triangle ABC with AB < AC. We denote the circumcircle of triangle ABC by I
Tangents to I at B and C meet at P, and AP meets I again at ). Let R be a point on I" such that
QR|| AB and let D, E be the intersections of QR with BC, AC, respectively. Prove that DE = ER .*

4. The circles o4, op, o¢, op lie inside a circle o and are tangent to o at A, B, C, D, respectively.
Each of the circles 04 and o is externally tangent to each of the circles og and op. Prove that

AB-CD=AD-BC.

REMARK ON PROBLEM G4:

A similar problem was used on the 20-th Austrian-Polish Mathematics Competition (1997). The
problem was to prove that A, B, C, D are concyclic if and only if the circles I'; and I'y are orthogonal.
The main idea of the solution (to use inversion) is the same as in G4.

ANOTHER SOLUTION TO PROBLEM Gb5:

It is clear (for example using the Menelaus theorem) that the lines FD and GE meet at the
point @ lying on the line CP. Let S be the intersection point of AB and CP. We want to show that
AS-SB=CS-SQ. We denote: a= AF =BG, b=FP, c= PG, d=FC=GC and express the lengths of
AS, SB, CS, SQ in terms of a, b, ¢, d.

* This problem was invented by Prof. Toshio Seimiya and used on his seminar.
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We first note that the similarity of triangles AFP and PGB yields a? = bc. Then we find that
PC=+Vd?—bc=vVd2—a?.

In the further calculations only the similarity of respective triangles are used. I have obtained:

V& _az R
AS’=(a_:ld)b, SBZ(a—l(—id)c, C,S:(a-l—d)dd2 a , SQ:ad\(/j_a)a .

Thus AS-SB=CS-5Q, so the points A, B, C, Q are concyclic.

Tokyo, 9 July 2003
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