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N1. What is the smallest positive integer ¢ such that there exist integers x;, x, ... , X; with

X+ 0o+ ... +x = 200229

Solution. The answerist = 4.

We first show that 20022%? is not a sum of three cubes by considering numbers modulo 9.
Thus, from 2002 = 4 (mod 9), 4> = 1 (mod9)and 2002 = 667 x 3 + 1 we find that

200222 = 42 = 4 (mod9),

whereas, from x> = 0, 1 (mod 9) for any integer x, we see that x3 + x3 + x3 # 4(mod9).
It remains to show that 20022%? is a sum of four cubes. Starting with

2002 = 10° + 10° + 1’ + 1°
and using 2002 = 667 x 3 + 1 once again, we find that

20022 = 2002 x (2002°")’

(10 x 2002%7) + (10 x 2002°¢")° + (2002%7) + (2002°¢")’ .

Comments
1. This is an easy question. The only subtle point is that, to show that 20022°*? is not the sum

of three cubes, we need to consider a non-prime modulus. Indeed, to restrict the number of

cubes mod n we would like ¢ (n) to be a multiple of 3 (so that Fermat-Euler is helping us),
but taking n to be 7 or 13 or 19 does not help: there are too many cubes. So we try a
composite n with ¢ (n) a multiple of 3, and the first suchisn = 9.

2. The proposer's original version of the problem only asked for a proof that three cubes is
impossible and five cubes is possible. It is a fortunate feature of the number 20022°*?
are able to settle the case of four cubes.
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N2. Letn > 2 be a positive integer, with divisors 1 = d; < dy < ... < d; = n. Prove that
didy + dyds + ... + di_d;is always less than n?, and determine when it is a divisor of nZ.

Solution. Note that if d is a divisor of n then so is n/d, so that the sum

S—Zd~d~1—n22 ! <n22(-1——1)<n—2—n2

= idiv1 = = .
1<i<k 1<7<k didis 1&r<x\di din d

Note also thatd, = p,dy_1 = n/p,d, = n, where p is the least prime divisor of n.
Ifn = pthenk = 2ands = p, which divides n%.
If n is composite then k > 2,and s > dj_dy = n*/p. If such an s were a divisor of n? then
also n?/s would be a divisor of n%. But1 < n?/s < p, which is impossible because p is the
least prime divisor of n?.

Hence, the given sum is a divisor of n? if and only if # is prime.

Comments

1. The problem is perhaps not quite as easy as the short solution here appears to suggest. Even
having done the first part, it is very easy to get stuck on the second part.

2. It would be possible to delete from the question the fact that the given expression is always
less than n2. But, in our opinion, the form as given above is natural and inviting to a reader.
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N3. Let p,ps, ..., P be distinct primes greater than 3. Show that 2772Pr + ] has at least 4"
divisors.

Comment

1. The natural strategy for this problem is to use induction on the number of primes involved,
hoping that the number of divisors increases by a factor of 4 for each new prime in the
expression. By the usual properties of the divisor function d (m), it would be enough to
show that 2°72"P» + 1 contains at least two new prime factors not contained in 2P/72~#-t 4 1,
Unfortunately this does not seem to be easy. Instead, we will show in an elementary way
that there is at least one new prime at each step. To finish the proof, we will need the
following additional observation: if k > mthen d (km) > 2d(m), which follows from the
simple fact that if a divides m then both a and ka divide km.

Solution. We claim first that if u and v are coprime odd numbers then the highest common
factor of 2“ + 1 and 2" + 1 is 3. Certainly 3 divides 2 + 1 and 2" + 1, because u and v are odd.
Suppose now that some ¢+ > 3 divides 2“ + 1and 2" + 1. Then we have 2* = -1 (mod ¢) and
2" = -1 (mod¢). Butif any 2*is —1 mod ¢ then the set of all such x is the set of all odd
multiples of 7 /2, where r is the order of 2 mod ¢. It follows that r /2 divides both u and v,
which is impossible as r > 2.

Note also that the factorisation
241 =2+ 1)UV -2V 4 2 -2 4 0)

shows that 2V + 1 is divisible by 2“ + 1 and 2" + 1, and so is also divisible by

(2% + 1)(2" + 1)/3.

Let us now prove the desired result by induction on n. It is certainly true whenn = 1 (for
example, because 27' + 1 is a multiple of 3 and is at least 27), so we assume that 2°tPr-1 + ]
has at least 4" ~ ! divisors and consider 2" + 1. Settingu = p,... p,_andv = p, in the
above, we see that 2“ + 1 and (2° + 1)/3 are coprime, whence m = (2* + 1)(2" + 1)/3 has
at least 2 x 4"~ ! divisors.

Now, we know that m divides 2** + 1. Moreover, from uv > 2(u + v) whenu, v 2 5, we
see that 2 + 1 > m?. By the fact mentioned in the comment above, it follows that

d(2* + 1) > 2d(m) > 4" as required.

Further comment

2. From a more advanced point of view, f (pyp,... p,) is the product of cyclotomic polynomials
at 2, that is the product of ®,,, (2) over m | p;... p,. It turns out that ®, (2) and ®,(2) are
coprime unless 7 /s is a prime power (this is not an easy fact), from which it follows that
£ (p1p2... pn) has at least 2"~ ! prime divisors. Hence d (f (pip,... pu) > 2%, which is
much more than 4" when n is large.
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N4. Is there a positive integer m such that the equation

1 1 1 1 m
— 4 -+ = — = —
a b ¢ abc a+b+c

has infinitely many solutions in positive integers a, b, ¢?

Solution. Ifa = b = ¢ = 1thenm = 12, and we proceed to show that, for this fixed value
of m, there are infinitely many solutions in positive integers a, b, c. Write

1 1 1 1 12 _ __pabo

_+—- -— ———— —

a b ¢ abc a+b+c abcla+b+c)

where p(a, b, ¢) = a*(b + ¢) + b*(c + a) + ¢*(a + b) + a + b + ¢ — 9abc. Suppose
that (x, a, b) is a solution withx < a < b, thatis p(x, a, b)) = 0. Then, regarding this as a
quadratic equation in x, we see thaty = (ab + 1)/x > bis also a solution, except that we
need to establish that such a value y is integral.
Letay, = a; = a = 1, and define

a,a,,1 + 1

Apyy = R foreachn > 1.
n-1

We now prove the following assertions simultaneously by induction:

(1) an-llanan+l + 1, (ll) anlan-l + a4, (111) an+l|an-lan + 1.
The three assertions are true when n = 1 from the initial values for ay, a,, a,, and we suppose
that they are true when n = k. Thus (i) implies that g, _, and g, are coprime and that g; .,
divides (@ g, + 1)ak+1 + a1, whereas (ii) gives a; | axa}.1 + @41 + ax_1, so that together
G- 1| @i 1 + Qo + Gp-1, thatis ag | gy (@arser + 1)/ a1 + 1 = ary1@isn + 1, which is
(i) whenn = k + 1.
Similarly (i) also implies that a; _, and g, , ; are coprime, and that a; _; |@iax +1 + 1 + awar—y,
whereas (iii) gives a1 | @ai_; + 1 + @iy, 1, so that together a; _ yay 1 | ax(ax -1 + axsy) + 1,
that is @y, | ax + (@x@re1 + 1)/ax_1 = G + g4z, which is (ii) whenn = k + 1.
Finally, the definition of a; . , together with (i) implies a; . 2 | azar +1 + 1, which is (iii) when
n==%k+1.

Therefore (a,) is a sequence of integers, strictly increasing from n > 2, and p(ay, @y+1,ans2) =0
for all n. In other words, (a,,, Qnity Qns 2) is a solution to the given equation, with

(@) = (1, 1, 1, 2, 3, 7, 11, 26, 41, 97, 154, ... ).

Comments

1. Another method is to define (c,,) byco = 2,c; = 3,and ¢y, = 3¢3,-1 — Cyn-2 and
Cm+1 = 22, — Can-1, and use induction to show that the triples (Cus Crs1y Cnva) are
solutions.

2. One may also apply Pell's equation to show that there are infinitely many solutions for
m = 12. Indeed, let p(a, b, c) be as above. With an eye on eliminating a variable in p by a
substitution of the form a + ¢ = rb with a suitable r, we find that
p(1, 1,r=1) = 2(r - 2)(r - 3), showing that r = 2, 3 are suitable candidates. We
therefore consider

p(a, b, 2b - a) = 3b(3a> — 6ab + 26> + 1) = 3b(3(a - b)* - b* + 1)
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and recall the well-known result that there are infinitely many solutions to the Pell equation
x* = 3y + 1. Thus there are infinitely many positive integers a < b satisfying
pla, b, 2b — a) = 0.

. In fact, using a little more theory on quadratic forms, it can be shown that if the equation is
soluble for a given value of m then there are infinitely many solutions for that value of m.

. There is nothing special about m = 12: there are infinitely many possible values of m.
Indeed, the given equation may be rewritten as m = (a + b + ¢)(1 + ab + bc + ca)/abc,
which becomes m = (1 + b+ c) + (1 + b + ¢)*/bc on setting a = 1. One can define a
sequence (b,) with the property that b,b, . | divides (1 + b, + b+ 1)%; take, for example,

b =4,b,=5,seth,,, =3b,,; — b, — 2, and induction then shows that

(bps1 + by + 1)? = 5b,b,.1. The corresponding value for m is then b, + b, + 6. We have
one solution for this value of m, so by the remark above there are infinitely many solutions
for this value of m.
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NS. Letm, n > 2 be positive integers, and let ay, a, ... , a, be integers, none of which is a
multiple of m"~ 1, Show that there exist integers ey, e, ... , e, not all zero, with | e | < mfor
all i, such that e;a; + e;a, + ... + e,a,is a multiple of m".

Solution. Write N for m". Let B be the set of all n-tuples b = (bl, by, ..., b,,) , where each b;
is an integer withO < i < m. Forb € B, write f (b) for bja; + ba, + ... + b,a,. If some
distinct b, b’ € Bhave f(b) = f(b') (mod N) then we are done: setting e; = b; — b;” we have
eia + ... + ea, = 0 (modN). So we are done unless no two f (b) are congruent mod N.
Since |B| = N, this implies that, mod N, the numbers f(b) for b € B are precisely the numbers
0,1, ..., N — 1 (in some order). We wish to show that this is impossible.

Consider the polynomial 3, 5 X®. On the one hand, it factorises as
n
[T +x% + X%+ .. + X" D),
P
but on the other hand itisequalto 1 + X + X2 + ... + X"~ !whenever XV = 1. But now
setX = exp(2mi/N), a primitive N-th root of unity. Then

_wN
1+X+X+ ... +x"!'= 11 }; =0,

but for each i we have

1 - X™
1-X"’

which is non-zero because ma; is not a multiple of N. This is a contradiction.

1+ X%+ X% 4 . + XD o

Comments

1. The proof begins with a standard pigeonhole argument. The exceptional case (with each
congruence class mod N hit exactly once) is quickly identified, and looks at first glance at
though it should be easily attackable. However, it is actually rather challenging. The use of
the polynomial and N-th roots of unity is probably the most natural approach. We do not
know of any bare-hands or essentially different proof.

2. The condition that no g; is a multiple of m"~! cannot be removed, as may be seen by taking
a; = m ~!foreachi.
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N6. Find all pairs of positive integers m, n > 3 for which there exist infinitely many positive
integers a such that

at+a-1

a+a® -1
is itself an integer.

Solution. Suppose m, n is such a pair. Clearly n < m.
Step 1. We claim that f (x) = x™ + x — 1is exactly divisible by g(x) = x* + x> - lin
Z [x]. Indeed, since g (x) is monic, the division algorithm gives

f@x)/gx) = qx) +r(x)/g
where deg (r) < deg(g). The remainder term r (x)/ g (x) tends to zero as x — oo; on the other
hand it is an integer at infinitely many integers a. Thus r (a)/ g (a) = O infinitely often, and so
r = 0. The claim follows; and in particular, we note that f (a)/ g (a) is an integer for all
integers a.

Step 2. Both f (x) and g (x) have a unique root in the interval (0, 1), since both functions are
increasing in [0, 1] and span the range [-1, 1]. Moreover it is the same root, since g divides f;
call it a.

Step 3. We can use a to show that m < 2n. Certainly a > ¢, where ¢ = 0.618... is the positive
root of A(x) = x> + x — 1. This is because f is increasing in (0, 1) and f (¢) < h(¢) = 0 = f(a).
On the other hand, if m > 2n then 1 — a = o™ < (&)’ = (1 ~ @%)’, and the outer terms rearrange
togive a(a — 1)(a? + a - 1) > 0, which requires @ < ¢, a contradiction.

Step 4. We show that the only solution with m < 2nis (m, n) = (5, 3). This is pure number
theory, at last. Suppose we have a solution. We consider the value a = 2, and write
d =g2)=2"+3,sothat-2" = 1 (modd). Letm = n + kwherel < k < n, so that

2" = (d - 22" = 3 x 2" (mod d),
which shows that -2" # 1 (modd)whenl < &k < n - 2. Whenk = n — 1, thatis
m = 2n — 1, the least positive residue (mod d) for ~2™ is given by 3 x 2" ! - d = 2""1 3,

which takes the value 1 only when n = 3, givingm = 5. Finally, the identity
@+a-1=(a+a - 1){a® - a+ 1)shows that (m, n) = (5, 3)is indeed a solution.

Comment

I. Although the above solution is entirely elementary, several separate good ideas seem to be
needed to crack the problem. Step 1 is the natural way to begin, and Step 4 has several
variations. Perhaps the most important—and most difficult—idea is the use of the common
root a (in Steps 2 and 3) to obtain the quantitative bound m < 2n. All solutions we have
seen make use of this idea in some form.
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G1. Let B be a point on a circle S}, and let A be a point distinct from B on the tangent at B to §;.
Let C be a point not on S such that the line segment AC meets S at two distinct points. Let §;
be the circle touching AC at C and touching S; at a point D on the opposite side of AC from B.
Prove that the circumcentre of triangle BCD lies on the circumcircle of triangle ABC.

Comments

1. In both solutions that follow, the key idea is to work with the perpendicular bisectors of BD
and CD.

2. There does not appear to be a straightforward coordinate solution.

Solution 1. Let E and F be the midpoints of BD and CD respectively, K be the circumcentre of
triangle BCD and let TDT’ be the common tangent to the two circles. Then EK is perpendicular
to BD and bisects the angles between the tangents BA, DT to ) at B, D. Hence K is equidistant
from BA and DT. Similarly, KF is perpendicular to CD and X is equidistant from AC and DT.
Hence K is the centre of a circle touching BA, AC and DT. Accordingly, AK is a bisector of
ZBAC. ButK is also on the perpendicular bisector of BC and it is known that this line meets
the bisectors of ZBAC on the circumcircle of ABC.

Solution 2. We use the same notation as in the first solution.

Since the tangents at the ends of a chord are equally inclined to that chord, we have
ZTDB = ZABDand ZT'DC = ZDCA. Hence

4BDC = 180° — ZABD + £DCA

= 180° - (LABC - £DBC) + (£LDCB — ZACB)
(180° — ZABC - ZACB) + (£DBC + £ZDCB)
ZBAC + 180° - ZBDC.

It

Thus
2/BDC = 180° + ZBAC.
Finally
ZBKC = /BKD + /DKC
= 2(ZLEKD + £DKF) = 2ZEKF
= 2(180° - 4BDC) = 180° — ZBAC,
so that X lies on circle ABC.

Page 8

© Copyright: The IMO Compendium Group,
Mathematical Society of Serbia,
D. Djukic, V. Jankovic, 1. Matic, N. Petrovic,
e imo.ong.yi WWW.1mo.org.yu




G2. Let ABC be a triangle for which there exists an interior point F such that
LAFB = /BFC = ZCFA. Let the lines BF and CF meet the sides AC and AB at D and E
respectively. Prove that

AB + AC > 4DE.

Comments

1. We present two solutions, a geometrical one and an algebraic one, both of which use
standard procedures and are of moderate difficulty.

2. Though the geometrical solution uses known properties of the Fermat point, these are very
easy to deduce directly.

3. A complex variable solution is also possible because of the 120° angles, but it is comparable
with the other methods in length and difficulty.

4. Ptolemy's inequality applied to the quadrilateral ADFE does not seem to produce the
required result.

Solution 1. We need the following lemma:

Lemma. A triangle DEF is given. Points P and Q lie on FD, FE respectively, so that

PF > ADF and QF > AEF,where A > 0. If ZPFQ > 90° then PQ > ADE.

Proof: Let ZPFQ = 6. Since 8 > 90°, we have — cos8 > 0. Now, by the cosine law, we
have PQ? = PF? + QF* — 2 cos O (PF)(QF) > (ADF)* + (AEF)* — 2 cos 8 (ADF)(AEF) = (A\DE)?
from which PQ > ADE, as required.

Q

B C

We now start the main proof. Note that ZAFE = /ZBFE = ZCFD = ZAFD = 60°. Now
let the lines BF, CF meet the circumcircles of triangles CFA, AFB at the points P, O
respectively. Then it is easy to see that both triangles CPA and AQB are equilateral. We now
use the lemma with A = 4and & = 120°. To see how, let P; be the foot of the perpendicular
from F to the line AC and suppose the perpendicular bisector of AC meets the circumcircle CFA
at P and P,. Let M be the midpoint of AC. Then PD/DF = PM/FP, > PM/MP, = 3so
PF > 4DF. Similarly we have QF > 4EF. Since ZDFE = 120°, the lemma applies and so
PQ > 4DE. Finally, using the triangle inequality, AB + AC = AQ + AP > PQ > 4DE.
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Further comment

5. An alternative argument may be used to prove PF > 4DF. Since the area
[CFA] = [AFD] + [CFD] we have (CF)(AF) = (CF)(DF) + (AF)(DF), from which

(CF)(AF)
DF = —————.
(CF) + @P) | (%)
But it is easily shown, by Ptolemy's theorem for the cyclic quadrilateral AFCP for example,

that CF + AF = PF,so PF/DF = {(CF) + (AF)}*/{(CF)(AF)} > 4.

PR

Solution 2. Let x, y, z denote the lengths of AF, BF, CF respectively. Then, from (*), we have
DF = xz/(x + z) and similarly EF = xy/(x + y). Applying the cosine law to triangles ABF,
ACF, DEF the given inequality becomes
xy )( Xz )
x+y/\x +z

2 2
\/x2+xy+)’2+\/x2+xz+z2>4\[( xy)+(xz)+
Since (x + y)/4 > xy/(x + y)and (x + z)/4 3 xz/(x + z)itis sufficient to prove

x+Yy X+z

VE+xy+ P + VR +xz+ 223 Jx+ 3P + (x + 2% + (x + ) (x + 2).

It is easy to check that the square of the left-hand side minus the square of the right-hand side
comes to

2,0 + xy + Y02 + xz + 22) - (X + 2@ + 2)x + yz).

It is sufficient, therefore to show that the square of the first term is greater than or equal to the
square of the second term. But a short calculation shows that the difference between these two
squares is equal to 3 (x> — yz)° > 0.

Further comment

6. It is easy to show that equality holds if and only if triangle ABC is equilateral, but there
seems no interest in making this part of the question.
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G3. The circle S has centre O, and BC is a diameter of S. Let A be a point of § such that
ZAOB < 120°. Let D be the midpoint of the arc AB which does not contain C. The line
through O parallel to DA meets the line AC at I. The perpendicular bisector of OA meets S at E
and at F. Prove that ] is the incentre of the triangle CEF.

Comments
1. The condition ZAOB < 120° ensures that / is internal to triangle CEF.

2. Besides the two solutions given, other proofs using circle and triangle properties are
possible; a coordinate method would appear to be lengthy.

Solution 1. A is the midpoint of arc EAF, so CA bisects ZECF. Now, since OA = OC,
ZAOD = 1 /AOB = LOAC so OD is parallel to IA and ODAI is a parallelogram. Hence
Al = OD = OE = AF since OFAF (with diagonals bisecting each other at right angles) is a
rhombus. Thus

LIFE = ZIFA - £LEFA = /ZAIF - ZECA

= ZAIF — ZICF = ZIFC.
Therefore, IF bisects angle EFC and I is the incentre of triangle CEF.

Solution 2. As in the first solution, ODAI is a parallelogram. Thus both O and I lie on the
image S* of the circle S under the half-turn about the midpoint M of EF. Let I, be the incentre
of the triangle CEF. Since A is the midpoint of the arc EF of S which does not contain C, both /
and /; lie on the side CA, which is the internal bisector of ZECF. Note that

AO = OE = EA = AF = FO,
implying that AEQ and AFO are congruent equilateral triangles. It follows that ZEOF = 120°.
Since I is the incentre and O the circumcentre of CEF we have
ZEIF = 90° + }ZECF = 90° + ZEOF = 120°.
It follows that I, as well as /, lies on §*. Since S* has a unique intersection with the side AC, we
conclude that/ = I.
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G4. Circles §; and S intersect at points P and Q. Distinct points A; and B; (not at P or Q) are
selected on S;. The lines A, P and B,P meet §, again at A, and B, respectively, and the lines A;B;
and A,B, meet at C. Prove that, as A, and B, vary, the circumcentres of triangles A,4,C all lie
on one fixed circle.

Comments

1. The solution establishes the essential fact that the circle to be identified passes through Q
and the centres Oy, O, of Sy, S, respectively. A solver must appreciate this before
composing a solution. The motivation may arise from considering certain special or
limiting cases. For example, when AP is tangent to S, at P then A; coincides with P and C
coincides with B;. The circumcircle of triangle A;A,C is then §; and its circumcentre O
coincides with O;. Also if B, is close to Q, so are B, and C, indicating that Q lies on the
circle to be identified.

2. Although the solution given is short and the problem is by no means hard, it is not as
straightforward as the solution may at first sight suggest (see above comment).

3. An analytic solution is possible, but the best we could manage took three full sheets of
writing!
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Solution.

Step 1. The points A;, C, A,, Q are concyclic.

Proof: We prove this by showing that the opposite angles of the quadrilateral add up to 180°.
We have AA1CA2 + éAlQAz = AA]CAz + AA1QP + ZPQAz = ZBchz + ZCBIBQ + éCBzBl = 180°.
Here we have made use of the circle property that the exterior angle of a cyclic quadrilateral is
equal to the interior opposite angle and also that angles in the same segment are equal.

Step 2. Let O be the circumcentre of triangle A;A;C. Then the points O, Oy, Q, O, are
concyclic.

Proof: We again prove that opposite angles of the quadrilateral add up to 180°.

From Step 1 we have OQ = OA;. Also 0,Q = 0,A,. Hence £00,Q = 1/A4,0,0

= 180° — LA PQ. Similarly Z00,Q = 180° - Z£A,PQ. Here we have used the property
that the angle at the centre is twice the angle at the circumference and the angle properties of a
cyclic quadrilateral. Hence Z00,Q + Z00,Q = 180° — ZLA,PQ + 180° — ZA,PQ = 180°.
Thus, the centres of the circumcircles of all possible triangles A;A,C (and similarly for triangles
BB,C) lie on a fixed circle through O, O, and Q.

Further comment

4. There are some additional features about this configuration which may arise in alternative
proofs. For example, if the tangents at A;, A, meet at C”’ then A;, A,, C, C’ are concyclic.
Since it is easy to prove that C’, A, A;, Q are concyclic, we have an alternative proof of
Step 1.

Page 13

© Copyright: The IMO Compendium Group,
Mathematical Society of Serbia,
D. Djukic, V. Jankovic, 1. Matic, N. Petrovic,
WWW.1mo.org.yu

WWW.imo.org. yu



GS. For any set § of five points in the plane, no three of which are collinear, let M (S) and m (S)
denote the greatest and smallest areas, respectively, of triangles determined by three points from
S. What is the minimum possible value of M (S)/m (S)?

Solution.

When the five points are arranged at the vertices of a regular pentagon, it is easy to check that
M (S)/m(S) equals the golden ratio, T = (1 + V/5)/2. We claim that this is best possible.

Let S be an arbitrary configuration, and label the points A, B, C, D and E, so that AABC has
maximal area M (S). In the following five steps, we prove the claim by showing that some
triangle has area M (S) / T or smaller.

Step 1. Construct a larger triangle AA’B’C’ with parallel sides to AABC so that A, B and C lie at
the midpoints of the edges B'C’, C’A’ and A’B’, respectively. The point D must then lie on the
same side of B’C’ as BC otherwise ADBC would have greater area than AABC. Arguing
similarly with the other edges and with the vertex E, it follows that both D and E necessarily lie
within AA’B’C’ (perhaps on its boundary).

Cl

AI

Step 2. We can assume more. Of the three triarigles AA’BC, AAB’C and AABC’ at least one of
them contains neither D nor E. Rearranging the labels A, B and C if necessary, we can assume
that D and E are contained inside the quadrilateral BCB'C’.

Step 3. Note that if an affine linear transformation of the plane is applied to the configuration S,
the ratio M (S) / m (S) remains unchanged (since all areas change by the same factor). We can
therefore make the convenient assumption that A, B and C are vertices of a regular pentagon
APBCQ; if this is not already true, then a suitable affine linear transformation can be found
carrying A, B and C to the required positions. Since ZABP = ZBAC = 36°, it follows that P
lies on BC’. Similarly, Q lies on CB'.

B A c’

Page 14

© Copyright: The IMO Compendium Group,
Mathematical Society of Serbia,
D. Djukic, V. Jankovic, I. Matic, N. Petrovic
WWW.1mo.org.yu

2

WWW.imo.org. yu



Step 4. If either D or E lies in the pentagon APBC(Q, then we are done. We argue for D as
follows: Note that AAPB has area M (S) /7. If D lies in AAPB, then ADPB has area at most

M (S)/z. Likewise we are done if D lies in AAQC. Finally if D is contained in AABC, then one
of ADAB, ADBC or ADCA has area at most M (S)/3 < M (S)/z. Similarly for E.

Step 5. What remains is the case where D and E are contained in the union of the triangles
AAPC’ and AAQP’. Then |AE|, |AD| < |AP| = |AQ|, and on the other hand the angle

0 = ZEAD satisfies one of 0 < 8 < 36° (if E and D lie in the same triangle) or

108° < 6 < 180° (if they lie in different triangles). Either way, we have

Area (AADE) = }|AD||AE| sin® < 4|AP||AQ| sin 108° = Area (AAPQ) = M(S)/r.
This completes the proof that the minimum value of M (S)/m (S) is 7.

Comments

1.

WWW.imo.org. yu

The difficulty is in knowing where to begin. The winning configuration (a regular pentagon)
is certainly eminently guessable, but what next? It is natural to look at a largest (or
smallest) triangle and work from there. After that, naive case-checking or diagram-chasing
doesn't seem to work very well. The crucial observation is in Step 3, when we note that
AABC can be identified with part of a regular pentagon. Now the case-checking and
diagram-chasing becomes comparatively clean, since the known geometry of the pentagon
can be used as a reference.

Without something like Step 3 the problem is forbidding. It is still possible, but quite
difficult, to find a clean argument — most attempts are likely to be messy and/or incomplete.

Reading the above proof carefully, it is easy to show that the minimum is attained precisely
when S is an affine linear transformation of the vertices of a regular pentagon.

The proof above in no way generalises when the number n of points is greater than 5. It
would be extremely interesting if a contestant were to find a proof that did work for some
other values of n. For general n, the answer is unknown, and not even known
asymptotically; this is related to the famous Heilbronn problem on the smallest triangle
formed from n points in the unit square.
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G6. Letn > 3 be a positive integer. Let Cy, C;, Cs, ... , C,, be unit circles in the plane, with

centres Oy, O3, O3, ... , O, respectively. If no line meets more than two of the circles, prove
that
1 -1
¢n-Dx
1<i<j<&n Oioj 4
Comments

1. We present a solution, which, though fairly short, requires considerable ingenuity to devise.
The question seems medium to hard in difficulty.

2. The last part of the solution is a double-counting argument, and doubtless there are many
equivalent formulations possible.

Solution. We use the following Lemma.

Lemma. Let Q be a circle of radius p and PR, QS two chords intersecting at X, so that
£LPXQ = ZRXS = 2a. Then arc PQ + arcRS = 4ap. (See Diagram 1.)

Diagram 1

Proof: Let O be the centre of Q. Let ZPOQ = 24 and ZROS = 2u; then ZQSP = Aand
ZRPS = yu, since the angle at the centre is twice the angle at the circumference. Then
ZRXS = 2a = A + uandarcPQ + arcRS = 2ip + 2up = 4ap.

We now start the main proof.

Surround all the given circles with a large circle Q of radius p. Cons1der two circles C;, C;, with
centres O;, O; respectively. From the given condition C; and C; do not intersect. Let 2a be the
angle between their two internal common tangents PR, OS (see Diagram 2). We have

0:0; = 2 coseca,soa 2 sina = 2/00;
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Diagram 2

Now, from the lemma, arc PQ + arcRS = 4ap > 8p0;0;, so that
1 < arc PQ + arcRS

0.0, 8p

We now wish to consider the sum of all these arc lengths as i, j range over all pairs, and we
claim that any point of Q is covered by such arcs at most (n — 1) times. To see this, let T be
any point of Q and TU a half-line tangent to Q, as in Diagram 3. Consider this half-line as it is
rotated about T as shown. At some stage it will intersect a pair of circles for the first time.
Relabel these circles Cy and C,. The half-line can never intersect three circles, so at some
further stage intersection with one of these circles, say Cj, is lost and the half-line will never
meet C again during its transit. Continuing in this way and relabelling the circles conveniently,
the maximum number of times the half-line can intersect pairs of circles is (n — 1), namely
when it intersects C; and C,, C; and Cs, ..., C,,_; and C,. As T was arbitrary, it follows that the
sum of all the arc lengths is less than or equal to 2 (n — 1) 7p, and hence

1 < (n-Dm
1<i<j<n0i01' 4
U
_ T
Q
Diagram 3

Further comment

3. If the lemma proves elusive, a solver could construct a proof in which Q is sufficiently large
for the intersection points to be close to its centre, thus removing any need for the lemma.
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G7. The incircle © of the acute-angled triangle ABC is tangent to BC at K. Let AD be an
altitude of triangle ABC and let M be the midpoint of AD. If N is the other common point of Q
and KM, prove that Q and the circumcircle of triangle BCN are tangent at N.

Comments

1. We give two solutions, both of which involve a mixture of pure geometry and computation.
The problem is difficult, but not excessively so.

2. In the first solution, the point P is defined as the point of intersection of NK and the
perpendicular bisector of BC, and is shown to lie on the circumcircle of triangle BCN by
proving (NK) (KP) = (BK)(KC).

3. In the second solution, the point P is defined as the intersection (other than N) of NK and the
circumcircle of triangle BCN, and is shown to lie on the perpendicular bisector of BC by
proving that NK bisects ZBNC.

4. In the two solutions, we perform some manipulations that only make sense when AB is not
equal to AC. This is why we start by dealing with the (trivial) case when AB = AC. It
would be possible to add the words ‘non-isosceles’ in the statement of the problem, but we
feel that this would detract from its elegance, especially as the result does still hold in the
isosceles case.

A
N
M
I
Q
S
B( | |
1)

Solution 1. We may assume that AB # AC, as if AB = AC then the result is trivial (as the
distance between the centres of the two internally tangent circles is equal to the difference of
their radii). By symmetry, we may assume that AB < AC.

Let the perpendicular bisector of the side BC intersect NK and BC at P and A’ respectively. Itis
sufficient to prove that N, the incentre  of triangle ABC and S, the circumcentre of triangle
BCN, are collinear. Since /K and SP are parallel, both being perpendicular to BC, it is sufficient
to prove that P lies on the circumcircle of triangle BCN; for once we know SP = SN then
ZPNS = ZNPS = ANKI = ZPNI, and NIS is a straight line. To establish what is wanted
we show (NK) (KP) = (BK)(KC).
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Using the standard notation for triangle ABC (withs = (a + b + ¢)/2),wehave Bk =s5s-b
and KC = s — ¢,s0 (BK)(KC) = (s — b)(s - c). By the cosine law for triangle ABC, we
have cosB = (c? + a*> — b?)/2caand then BD = c cosB = (¢* + a* — b*)/2a. Now

KA” = BA' - BK = (b - ¢)and DK = BK - BD = (b - c)(s — a)/a. Let ZMKD = ¢; then
MD 1(AD)a B [ABC]

DK (b-c(s-a (b=-0(s-a)

where [ABC] is the area of ABC. Now ZNIK = 2¢,so NK = 2r sin ¢, where r is the inradius
of ABC. Finally, from triangle A’KP we have KP = KA’ sec¢ and hence

r[ABC] [ABC]?
(s — a) - s(s — a)
Here we have used the well-known expressions for area: [ABC] = rs = \/s(s — a)(s — b)(s — ¢).

tang =

(NK)(KP) = 2r(KA) tang = = (s - b)(s - ¢) = (BK)(KC).

Solution 2. As in Solution 1, we may assume AB < AC, and it is sufficient to show that NIS is
a straight line. But now we define P to be the intersection (other than N) of NK with the
circumcircle of triangle BNC. Now SP = SN implies ZSPN = ZSNP and IN = IK implies
ZIKN = ZINK, and NIS is a straight line if and only if all these angles are equal, which is
when /K and SP are parallel. Since IKX is perpendicular to BC this means that SP must be also,
and hence it is sufficient to show that P is the midpoint of the arc BC. To establish this, we
show that NKP bisects ZBNC for which it is sufficient to show that BN/CN = BK/CK. Again
let ZMKD = ¢. Now, by the cosine rule,

BN? = NK* + BK® — 2(NK)(BK) cos ¢
and

CN® = NK* + CK* + 2(NK)(CK) cos ¢.
So it is sufficient to show

BK*  NK? + BK? — 2(NK)(BK) cos ¢
CK® ~ NK* + CK? + 2(NK)(CK) cos ¢

or (CK - BK)NK = 2(BK)(CK) cos ¢.

Now NK = 2r sin ¢, so it is sufficient to prove 2r (CK ~ BK) tan¢p = 2(BK)(CK). But

tang = MD/DK = 3AD/DK = kcsinB/(s — b — c cosB), since M is the midpoint of AD.

Now BK = r cotiBand CK = r cot4C, so it is sufficient to prove

(cot4C ~ cot4B)(c sinB)/(a + ¢ — b — 2c cosB) = cot 4B cotiC.
Using the sine rule and a = ¢ cosB + b cosC this reduces to proving that
sinC sin B(cot C — cot4B) = cot4B cot4C (sinC - sinB + sinBcosC — sinC cosB). (%)
Putting (*) into half-angles, and cancelling sin 4 (B — C) this resolves to

sinB sinC = 4 sin 1B sin $C cos 4B cos iC,

which is true.

Further comment
5. Slight changes in the text are necessary in Solution 2 when AB > AC, but the solution is
essentially the same. .
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G8. Let S; and S, be circles meeting at the points A and B. A line through A meets S at C and
S, at D. Points M, N, K lie on the line segments CD, BC, BD respectively, with MN parallel to
BD and MK parallel to BC. Let E and F be points on those arcs BC of §; and BD of S,
respectively that do not contain A. Given that EN is perpendicular to BC and FK is
perpendicular to BD prove that ZEMF = 90°.

Comments

1. In the solution, the lemma looks elaborate but merely formalizes the ‘obvious’ similarity of
two figures involving circular arcs. This seems worth making explicit as it appears to be the
key to the problem.

2. A coordinate approach would be impracticable.

Solution.
Lemma. If P,Q\R, and P,Q,R, are circular arcs with

ZP,Q\R, = £P,Q»R, and Ty, T, are the feet of the perpendiculars
from Q;, Qs to PRy, PR, respectively, then if

P]Tl /T1R1 = P2T2/T2R2 then the triangles PlQlRl’ P2Q2R2 are

similar. P R
Proof: If @, is the unique point on arc P,Q,R making triangles w
P,Q\R,, P,0y'R, equiangular and therefore similar, and if Q,'T>’ is

perpendicular to P2R2, then P2T2'/ Tz'Rz = P 1 T1 / T1R1= P2T2 / T2R2, Q2

so Tz’ = T2 and Qz’ = Q2.
Turning now to the problem we have

BN/NC = DM/MC  since MN||DB

= DK /KB since MK ||CB.

Let FK produced meet S, again at Q. Then 3
ZBQD = /BAD = /BEC. By the Lemma, triangles BEC, DQB are

similar. Hence ZEBC = ZQDB = ZQFB and the right-angled

triangles BNE, FKB are similar.

Now ZMNB = /MKB since MKBN is a parallelogram, so ZENM = ZMKF. Also

MN = BK _ EN _ EN Therefore triangles ENM, MKF are similar and

KF _KF _NB MK
Z/NME = /KFM. Since lines MN, KF are perpendicular, so are EM and FM.

P,

Further comment
3. From the similarity of the right-angled triangles BNE, FKB it follows easily that
ZLEAF = 90° as well.
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Al. Find all functions f from the reals to the reals such that

FE@+y) =20+ f(fO) - %)

for all real x, y.

Solution. For each real ¢, the function given by f (x) = x + c is a solution for the given
functional equation, since it makes both sides equal x + y + 2c. We claim that these are the
only solutions.

Our strategy is to derive an equation of the form f (X) = X + c, where X is an expression
whose values are guaranteed to run over all real numbers.

We claim first that f is surjective. Indeed, sety = —f (x) in the functional equation. This gives

£ =2 + fF(F ) - %)
or

FO =2 = fF(-f ) - x).
As all real numbers have the form f(0) — 2x, for each real y there is a z with y = f(2), as claimed.
In particular there is an g with f (@) = 0. Setx = ain the functional equation. This gives

fO) =2a+f(fo) - a,

or equivalently
fO-a=fFfO)-a+a
As f is surjective, for each real x there is areal y with x = f(y) — a. Hence
x=f(x)+a
for all x, thatisf (x) = x — a.

Comment
1. This is an easy problem. It seems to be crucial to note that f is surjective.
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A2. Let gy, a,, ... be an infinite sequence of real numbers, for which there exists a real number
cwith0 < a; € cforall i, such that

|a; - a;| > - for alli, j withi # j.

i+
Prove thatc 2 1.

Solution. Fixn > 2, and let 0(1),0(2),...,0(n) be the permutation of 1,2, ...,n which orders the
first n elements of the sequence:

0 < As1) < Qo) <... < dgm) < c.

Then
c 2 Aon) — Ao(1)
= (Gom = on-1) + (Gou-1) = Gon-2) + -+ (Gory = o)
1 1 1
+ + ... —. (%)
on+on-1) on-1D+0o0n-2) g(2) + o(1)
Now, using the Cauchy-Schwarz inequality, we obtain
1 1 B 32
U(n)+a(n_1)+ +0(2)+0(1) (e +o(n=1)+ ... +(c)+a(1))) > (n-1)
SO
1 . N 1 S (n-1y7°
om+on-1) = o@+0o(1) 2(0@)+...+0(n)-a(1)-o(n)
_ (n-1)*
T n(n+1)-o(l)-o(n)
(n- 1)
? nt+n-3
n-1
> ’;{':3'.

From (*) it follows that the inequality
n-1 1 4

n+3 B n+3
holds foralln > 2. Thus we must have ¢ > 1.

c 2

Comments

1. What makes the question challenging is: how do we bring in the value of ¢? Which bits of
the data should we use? The key step is to realise that to make use of ¢ all we need are the
distances between adjacent terms. Having got equation (*), the rest is then easy, and there
are several ways to finish off the proof.

2. We do not know what the smallest value of c actually is.
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3. The solution relies on finding a lower bound for the quantity

1 + = 1 + ... + 1
oc()+02) o02)+003) on-1)+ o(n)
where o is an arbitrary permutation of (1, 2, ..., n). An alternative would be to take this

as the heart of the question, and ask for the exact minimum, thus:

A2'. What is the minimum value of
1 1 1
+ + ... +
o(l) +02) o02)+a3) on-1)+ o(n)
as o ranges over all permutations of {1, 2, ...,n} ?

The optimal permutation turns out to be the one givenby o (1) = 1,0(n) = 2,0(2) = 3,
o(n — 1) = 4,and so on. To prove this, we use induction, but it is vital to prove a
stronger statement: that if we look at permutations of a general sequence xy, x, ... , X,
instead of just 1,2, ... , n (where say x; < x; < ...<Xx,), then the optimal permutation is
again o (x;) = x1,0(x,) = X2,0(x2) = x3,0(Xs-1) = Xs and so on. The proof is more
difficult, and more interesting, than that of A2. The only drawback is that A2' lacks the
‘how on earth can we make use of the information?’ puzzle that contestants face with A2.
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A3. Let P be a cubic polynomial given by P(x) = ax® + bx> + cx + d, where a, b, c, d are
integers and a # 0. Suppose that xP (x) = yP(y) for infinitely many pairs x, y of integers with
x # Y. Prove that the equation P(x) = 0 has an integer root.

Comment

1. The main ideas in the solution are that x + y is bounded for all solutions x, y (consider the
shape of the quartic xP (x)), and that P is then symmetric about one particular value of
(x + y)/2 which is taken infinitely often.

Solution. Let x, y be distinct integers satisfying xP (x) = yP (y) so that
x(ax3 + b + cx + d) = y(ay3 + by2 +cy+d)
ie.ald* -y + (@ -yY)+c(F -yY) +dix-y = 0.
Dividing by x — y(# 0) leads to

a(x3 + x2y + xy2 + y3) + b(x2 + xy + yz) +c(x+y)+d=0. (1)
It is convenient to write
§ =X+, t = xy. (2)
Since
£+ x2y + xy2 + y3 = (x + y)(;uc2 + y2) = s(s2 - 2t)
and

arxy+y =5 -1,
(1) can be written in the form
as(s2—2t)+b(s2—-t)+cs+d=0
or equivalently as
P(s) = (2as + b)t. 3)

We claim that the integer s can take only finitely many values. Indeed, consider the right-hand
side of (3). Since 5% — 4t = (x — y)* > 0, we have | ¢ | < 52/4 so that

l(2as + bt < |(2as + b)(s?/4)|.

Equation (3) therefore leads to

as b,
55+ 78

which can only be true for finitely many values of the integer s, as required.

|as3+bs2+cs+d| <

Write Q (x) for xP (x). The equation xP (x) = yP (y) becomes Q (x) = Q (y), which holds for
infinitely many pairs of distinct integers x, y. Equivalently, Q (r) = Q(s ~ r) holds for
infinitely many pairs of integers s, r with s as in (2). But s can only take finitely many values.
Hence for (at least) one integer s, the equation Q (r) = Q(s — r) must hold for infinitely many
integers. But then Q (x) and Q (s — x) are polynomials of degree 4 which are equal for
infinitely many integer values of x. They must therefore be equal for all real numbers x.

Page 24

© Copyright: The IMO Compendium Group,
Mathematical Society of Serbia,
D. Djukic, V. Jankovic, I. Matic, N. Petrovic
WWW.1mo.org.yu

2

WWW.imo.org. yu



To finish the proof, we consider two cases.

Casel: s # 0. Wehave xP(x) = (s — x)P(s — x) for all real numbers x. Take x = s to get
sP(s) = OsothatP(s) = Oass = 0. Hencex = sis an integer root of P(x) = 0.

Case2: s = 0. We now have Q (x) = Q (-x) for all real numbers x so that Q is an even
function. As Q (x) is divisible by x, it must be divisible by x*i.e. @ (x) = xP(x) = x*R(x) for
some polynomial R (x). Hence P(x) = xR(x) so that P(0) = 0. Again, the equation

P(x) = 0 has an integer root, namely x = 0.

Further comment :
2. By examining further Cases 1 and 2 above, it is not too hard to show that polynomials P
satisfying the conditions of the problem have the general form
Plx) = (x~ k)(a.x2 - akx + m)
where a, k and m are integers. -
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A4. Find all functions f from the reals to the reals such that
F@+f@)FO) +F@) = fly - 20 + f@xt + y2)

forall real x, y, z, ¢.

Solution. We are given that

fy =z +f(t +y = 0 +f@)FG + ) (*)
for all real x, y, z, t. The equation (*) has the solutions f (x) = Oforallx, f(x) = 1/2forall
xand f(x) = x*for all x. These make both sides of (*) equal to 0, to 1 and to
(> + 22)(* + 1?) respectively. We claim that there are no other solutions.
Suppose (*) holds. Then settingx = y = z = 0 gives 2f (0) = 2f (0)(f (0) + f(9)). In
particular 2f (0) = 4f (0)>and sof (0) = 0 orf(0) = 1/2. Iff(0) = 1/2 we get
f(©) + f(t) = 1andsof is identically 1/2.
Suppose then that f (0) = 0. Then setting z = ¢t = 0in (*) gives f (xy) = f(x)f (), thatis f is
multiplicative. In particular f (1) = f(1)*andsof(1) = Oorl. If f(1) = Othen
fx) = fx)f@) = 0forall x.
So we may suppose thatf (0) = Oandf (1) = 1. Settingx = Oandy = ¢t = 1, (*) gives

f(=2)+f(2) =2(2)
and so f (-z) = f(z) for each z, that is f is an even function. So it suffices to show that
f(x) = x*for positive x. Note thatf (x*) = f(x)* > 0;asf is an even function, f (y) > O for
all y.
Nowputt = xandz = yin (*)to get

FE+5) = Fo+ o)
This shows that f (x> + y) > f(x)? = f(x?). Henceifu > v > Othenf (u) > f(v), thatisf
is an increasing function on the positive reals.
Sety = z =t = 1in(¥)toyield

f-D+fx+1) =2 +1).
By induction on n, it readily follows from this that f (n) = n? for all non-negative integers n.
Asfiseven,f(n) = n®for all integers n, and further, as f is multiplicative, f (a) = a? for all
rationals a. Suppose that f (x) # x* for some positive x. If f (x) < x? take a rational a with
x > a > \f(x). Thenf(a) = a*> > f(x), but f(a) < f(x)asf isincreasing. Thisis a
contradiction. A similar argument shows that f (x) > x?is impossible. Thus f (x) = 2 for all
positive x, and since f is even, f (x) = x% for all real x.

Comments

1. This is a medium difficulty problem, requiring no really clever ideas, but a willingness to
experiment with the functional equation to squeeze out diverse consequences. One also
needs the passage from knowing f on the rationals to knowing it on the reals: here the key
point is that we know that f is increasing (on the positive reals).

2. This problem is clearly inspired by the famous identity
(x2 + zz) (y2 + t2) = (xy - zt)2 + (xt + yz)2
used to study sums of two squares in number theory.
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3. Inits original form, the problem had the variaiﬂe t set equal to 1, thus:
A4'. Find all functions f from the reals to the reals such that
F@+f@QFM+1) =fy -2 +fx+y)

for all real x, y, z.

This has the ‘sums of two squares’ hidden, so that it may be less clear that f (x) = Pisa
solution. We feel that this version is less elegant and attractive than the form we have given.
It is quite easy to transform either problem into the other.
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AS. Let n be a positive integer that is not a perfect cube. Define real numbers a, b, ¢ by

1 1
a—3/1_1, b=a—[a]’ C=b—[b]’

where [x] denotes the integer part of x.

Prove that there are infinitely many such integers n with the property that there exist integers
r, s, t,not all zero, such thatra + sb + tc = 0.

Solution. Note first that it is sufficient to find rational numbers r, s, ¢ not all zero such that
ra+ sb +tc = 0.

Letm = [alandk = n — m>. Then

1<k<(m+1°-1)-m=3m@m+ 1).

3

From the factorisation @®> — m® = (a — m){a® + am + m?) we have

1 a + am + m?
a-m k
Since a < m + 1, the numerator is less than

b =

(m+ 1>+ (m+ OHm+m =3m +3m + 1.
To simplify the calculation, we shall assume that [b] = 1. This is true provided that

3m’ + 3m + 1 < 2k
Now
2 4 2 _
b—[b]=b—1=a amI:-m k.

Factorise the numerator in the forma®> + am + m* — k = (a - x)(a - y), so that
x+y=-mandxy = m?> — k. Note that x, y are real since the discriminant (x — y)*is
m? — 4(m* — k) = 4k - 3m®> > 0by (*). Then

.= 1 k k(@ +ax + D)@+ ay + )

b-1 (a-x(a-y (@ - %) (a® - ) '

(Note that a®> + ax + x*and @® + ay + y? are strictly positive.)
Since

2+y =@+ nlx+y-30] = -m[m® - 3(m® - k)] = m(2m® - 3%)
and

£y = () = (- 1)
are integers, sois | = (@® — x*)(a® - y’) = n* = (® + y’)n + £*. Then

c=-(a+ax+ 0 +ay+5y)
(a4 + (x + y)a3 + (x2 + xy + yz)a2 + xy(x + y)a + x2y2)

(ka2 + (m (k2 - m) + n)a + (m? - k)2 - nm) ;

~ A A o~
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Tomake ra + sb + tc = 0, choose s and ¢ so that the coefficients of a* and a° vanish i.e.

stk sm*  thk(, , 2
S+ =0 P+ Zm? - k) - nm) = 0.
P + ] apd . + ] ((m ) nm) 0

3
—EI;— and the second then becomes

_tk2m2 + ﬁ((m2 - k)2 - mn)

The first equation gives s

=0
l l
. tk[; 2 2 2
1.e.—i- (m - k) —mn—km] = 0.

The bracket simplifies as

m(m3 -n) - 3km® + Kk
—mk - 3km* + K’

k(k - 3m® - m).

Choose k = 3m? + m, which satisfies (*) and also satisfies 1 < k < 3m(m + 1). We have
therefore shown that for integers n of the form m® + 3m? + m we can obtain non-zero rational
values of 5, ¢ so that sb + tc is a rational multiple of a. In view of the opening comment, this

completes the proof.

m* - 2km? + kK — mn - km

Comment

1. One of the key ideas is to force b to have integer part 1: this greatly simplifies what is to
come. But there are still more ideas needed: pure brute-force calculation would be doomed
to failure.
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A6. Let A be a non-empty set of positive integers. Suppose that there are positive integers
by, ... byand ¢y, ... , ¢, such that

(1) foreachithesetbA + ¢; = {b,-a +¢; : a € A}isasubset of A, and
(i) the sets b;A + c; and b,A + ¢; are disjoint whenever i # j.
Prove that

— 4+ ... +—1-<1.
b,

Comment

1. In the following proof, the key idea, after trying an example with the b; equal, is to weight
the number of times each b; appears (this is the use of the p; below). After that, the
calculations are quite easy, and there are several ways to accomplish them. However, this
key idea is rather non-trivial, so we feel this is a hard problem.

Solution. For a contradiction, assume that

1 1

—+ ... +—=>1.

bl bn

So certainly n > 2. Note also that A is infinite.

For each i, define f; (x) = bix + c;. Each function f; maps A to itself. By condition (i), if
fi(a@) = fij(d)fora,a’ € Atheni = jandsoa = d'. By iterating this argument, it follows
that if we have a, @’ € A and

Fulfo (oo fita).)) = £, (o £1(@).0)
then each iy = j, (anda = a).
The idea of our proof is to take a suitable a € A and generate a family of numbers of the form
fi, (f,~2 ( fi(a)... )) by choosing iy, ... , i, appropriately. These iterates are all distinct, and
we will get an upper estimate on their size, but a lower bound on their number. Before
embarking on the main argument, let us consider the case when b; = b, = b; = 2 asan
illustration. If we choose a e A large enough, then for any i, € {1,2,3} we have
Fislfiu(-- fi,(@)... ) < (2.01) a. But there are 3’ such numbers, all distinct. Taking r large
enough we see this is impossible.
This argument is trickier to generalize when the b; are not all equal. To do so we will look at all
sequences of the functions f; of length N where each f; appears in a proportion dependent only
on i. Take positive rational numbers py, ... p, (to be chosen later) with p; + ... +p,=1andan
integer N which is a multiple of Ny, the least common multiple of the denominators of the p;.
Hence each p;N is an integer. Leta € A and consider the set @ (N) of the numbers of the form
Fis(Fi, (.. fiy(@) ... )) where, for each i, exactly p;N of the i, equal i. As these are all distinct,
® (N) has
N!

o). o)
elements.

Choose d; > b; with 1/d, + ... +1/d, > 1. There is a number K such that K < f;(x) < dx
for all i whenever x > K. As A is infinite, we may choose a € A witha > K. Then

folfol foy@...)) € dy...dya = d&¥V... &,

&NV =
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To obtain a contradiction we need an estimate for |® (N)|. We can use Stirling's formula, or
similar, to get a precise asymptotic formula for |® (N)|, but we can obtain a weaker but still
adequate lower bound in a completely elementary fashion. Note that

|® (N + No)l
@ (V)]

3 (N +No)(N+No—-1)...(N+ 1)

[N + pNo) iV + piNo = 1)... (N + D] ... [N + paNo) ... (BN + 1)]
_ (1 + Ng/N)(1 + (Ny — 1)/N)... (1 + 1/N)

[(o: + piNo/N)(p1 + (0iNo — /N) ... (o1 + 1/N)]... [(ps + PaNo/N)... (pn + 1/N)]
If we choose any ¢ > pi'... pi then (N + No)|/l@@V)| > 1/ 4™ for large enough N. It
follows that there is a constant U with |® (N)| > U/q" for all N divisible by No. But, as the
size of the elements of ® (N) is at most a (d%'... @) we have |® (V)| < a(d}... .
It is now clear how to choose py, ... , p, and g. We take py, ... , p, proportional to
1/dy, ..., 1/d,, and q with p'... i < q < 1/(d%... d&). Then our bounds on |® ()| are
contradictory for large N.

Further comment

2. Another approach is to consider the functions N(x) = |{a € A : a < x}|and
N;(x) = ra € bA + ¢ :a < x}l One gets

N > TN > iN(% - u)
i=1 i=1 i

for a suitable number 4. By ingenious manipulation of this inequality, a contradiction can
be obtained. However these manipulations seem less natural than the approach through
iterating applications of the f;.
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C1. Let n be a positive integer. Each point (x, y) in the plane, where x and y are non-negative
integers withx + y < n, is coloured red or blue, subject to the following condition: if a point
(x, y) is red, then so are all points (x’, y) withx” < xandy’ < y. Let A be the number of ways
to choose n blue points with distinct x-coordinates, and let B be the number of ways to choose n
blue points with distinct y-coordinates. Prove that A = B.

Comment

1. This is an easy question, with an interesting variety of approaches. We give three different
solutions: one is by induction on 7, one is by induction on the number of red points, and one
is a direct bijection.

Solution 1. Let the number of blue points with x-coordinate i be a;, and let the number of blue
points with y-coordinate i be b;. Our task is to show that apa;... a,_1 = byb;... b, -, and to
accomplish this we will show that ay, ay, ..., a,_ is a permutation of by, by, ... , b,_;.

We prove this result by induction on n. The case n = 1 is trivial, so we pass to the induction
step: we may assume the result for all smaller values of ».

Consider first the case when every point (x, y) with x + y = n+ 1 is blue. Ignoring these points,

we have a configuration for n — 1, with blue columns of sizes ay— 1,a; -1, ...,a,-,— 1 and
blue rows of sizes by — 1, by — 1, ..., b,—» — 1. It follows by the induction hypothesis that
a-1l,a-1,...,a,_ - 1isapermmutationof by — 1,b; - 1, ... , b,_, — 1, and since

a,-1 = b,_1 = 1 we are done.

Now suppose instead that some point (k, n — 1 — k) is red. Then the entire rectangle of all
points (x, y) withx < kandy < n — 1 - kisred. Thus, considering just the points (x, y)

with x < k, the induction hypothesis tells us that ag, ay, ... , a; - is a permutation of

by-ks bn-k+1, ..., by-1, and similarly we have that g ., ax+2, ... , @,- is a permutation of
bo, b1, ... , by_2_. Sincea, = b,_1-x = 0, we are done.

Solution 2. As above, we wish to show that ay, ay, ..., a,- is a permutation of by, by, ..., b,_;.

We prove this by induction on the number of red points: the result is trivial when there are no
red points. Choose a red point (x, y) with x + ymaximal. Thena, = b, = n -1 - x - y.
If we change this red point to blue, then we have a configuration with fewer red points, with all
blue rows and columns unchanged except that the values of a, and b, decrease by 1. So from

the induction hypothesis we have that ay, ay, ... ,a,-1, with a, replaced by a, — 1,is a
permutation of by, by, ..., b,_y, with b, replaced by b, — 1. Since a, = b,, it follows that
ap, ai, ... ,a,-1 is a permutation of by, by, ..., b,_1, as required.

Page 32

© Copyright: The IMO Compendium Group,
Mathematical Society of Serbia,
D. Djukic, V. Jankovic, 1. Matic, N. Petrovic,
WWW.1mo.org.yu

WWW.imo.org. yu



Solution 3. We give an explicit bijection between ay, ay, ... ,a,-1 and by, by, ... ,b,_1. Ifa, =0
then also b, = 0, and we let a, correspond with b,. If a, > 0, let (x, y) be the bottom blue point
in column x. Now, among the points (x, y), (x - 1,y + 1), (x = 2,y + 2), ..., there must be
at least one that is the leftmost blue point of a row: let the first one be (x’, y"). Then we let a,
correspond with by.

This is clearly reversible: if b, > 0 then we let (x, y) be the leftmost blue point in row y, choose

the first point among (x, y), (x + 1,y = 1), (x + 2, y — 2), ... that is the bottom blue point
of a row, say (x’, y'), and let b, correspond to ay.
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C2. For n an odd positive integer, the unit squares of an n x n chessboard are coloured
alternately black and white, with the four corners coloured black. A tromino is an L-shape
formed by three connected unit squares. For which values of # is it possible to cover all the
black squares with non-overlapping trominos? When it is possible, what is the minimum
number of trominos needed?

Solution. Write n = 2m + 1. The key observation for the second part of the problem, which
also helps in eliminating cleanly the case n = 5 for the first part, is the following. Consider the
black squares at an even height above the bottom row: there are (m + 1)* of them, and no two
are covered by any one tromino. So we always need at least (m + 1)? trominos to cover.

This disposes of the casesn = 3andn = 5(and n = 1), as in each of these cases we have
that 3(m + 1)?is greater than 2, so that the black squares cannot be covered by trominos.

It remains only to show that when n > 7 we can cover the black squares with exactly (m + 1)
trominos. Forn = 7, the numbers make this just about possible, as 3 (m + 1)?is 48. There are
several ways to achieve this. One simple way is to note that we can make a 2 x 3 rectangle
from trominos, and two of these together make a4 x 3 rectangle. If we lay four of these
around the 7 x 7 board, we have covered every square except the central one. But now take a
tromino that is adjacent to the central square: by the way the 4 x 3 rectangles have been built
up, it may be moved to uncover a white square and cover the central black square instead.

4 3

4 __: ._'_}
Lo 3

[ —wg

I y
3 4
The casen = 7 From 2m - 1) x 2m - 1)
to(2m + 1) x 2m + 1)

In general, having covered the black squares ona (2m - 1) x (2m — 1) board with m?
trominos, let us form a (2m + 1) x (2m + 1) board by surrounding it witha 2m - 1) x 2
rectangle and a (2m + 1) x 2 rectangle. Now, we may break up the (2m — 1) x 2 rectangle
into 2 x 2 squares (m — 2 of them) and one 2 x 3 rectangle, so that its black squares may be
covered by (m — 2) + 2 trominos, and similarly the black squares of the 2m + 1) x 2
rectangle may be covered by (m — 1) + 2 trominos. This gives atotalof m*> + m + (m + 1)
trominos, as required.

Comment

1. Covering problems are not uncommon, but this problem seems to be rather unusual. What
is nice is that when one first thinks about the problem it seems very messy, but when one
has made the key observation above it all becomes very clean and elegant!
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C3. Let n be a positive integer. A sequence of n positive integers (not necessarily distinct) is
called full if it satisfies the following condition: for each positive integer k¢ > 2, if the number &
appears in the sequence then so does the number £ — 1, and moreover the first occurrence of
k — 1 comes before the last occurrence of k. For each n, how many full sequences are there?

Solution. We claim there are n! full sequences. To do this, we will construct a bijection with
the set of permutations of {1, 2, ..., n(i.
Letay, ..., a, be a full sequence, and let r = max (al, v a,,). Then all the numbers from 1
toroccurinay, ..., a, LetS; = {k a4 = i} for1 < i < r. Then all the §; are non-
empty, and they partition the set {1, 2,...,n}. The condition that the sequence is full means
thatmin S, _; < maxJS;for2 < k < r. Now we write down a permutation by, ... , b, of
{1, 2,...,n} by writing down the elements of S; in descending order, then the elements of S, in
({iescending i)rder and so on. This gives a map from full sequences to permutations of

1, 2,...,n¢.
Note also that this map is reversible. Indeed, given a permutation by, ..., b, of {1,2,...,n} let
Sy = {by, ..., by} where by >...> by, < by 41,16t Sy = {by 41, ..., by} Where
by, +1 >... > by, < by, +1andsoon. Thenleta; = i wheneveri € §;.

It follows that the full sequences are in bijection with the set of permutations of {1,2,...,n},as
required.

Comment

1. Itis easy to guess, from some small examples, that the answer is n!, but finding a bijection
is not easy. An alternative proof goes by induction on n: given a full sequence of length n,
we form a sequence of length n — 1 by removing from it the first occurrence of its highest
number. It is easy to check that this sequence of length n — 1 is full. One can then check
that each full sequence of length n — 1 arises in this way from exactly n full sequences of
length n.
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C4. Let T be the set of ordered triples (x, y, z), where x, y, z are integers with0 < x,y,z < 9.
Players A and B play the following guessing game. Player A chooses a triple (x, y, z) in T, and
Player B has to discover A's triple in as few moves as possible. A move consists of the
following: B gives A a triple (a, b, ¢) in T, and A replies by giving B the number
lk+y-a-bl+|y+z-b-c +|z+x-c - al Find the minimum number of moves
that B needs to be sure of determining A's triple.

Solution. It is easy to see that two moves cannot be enough. Indeed, each answer is an even
integer between 0 and 54 inclusive, so that there are 28 possibilities for each answer. Thus with
two moves the number of possible outcomes is at most 282, which is less than the required
number of outcomes, namely 1000.

We now set out to show that three moves are enough, by providing an explicit strategy. The
first move should be (0, 0, 0). The reply is 2(x + y + z), so that we now know the value of

§ =x+y+z Clearly 0 < s < 27, but to reduce the number of cases, in the algorithm
below we may assume that s < 13. Indeed, if s > 14 then we perform the algorithm below,
but always ‘reflecting’, i.e. asking (9 — a, 9 — b, 9 — ¢) instead of (a, b, ¢) ~ we will recover
the reflection of (x, y, z) at the end.

Case 1: s < 9. This is the easy case. The second move should be 9,0,0). We learn

Yy+z+ O -x-y+ 0 -x-2) = 18 - 2x, so we now know the value of x. And
similarly asking (0, 9, 0) tells us the value of y, so we are done (asz = § — x — y).

Case2: 9 < s < 13. The second move should be (9, s — 9, 0). We learn

z+ 9 - x ~ 2 +9 — x|, which is say 2k, where k = zifx + z > 9andk = 9 — xif

x + z < 9. Note that whichever value k takes we do have z € k < s.

Case 2a: s — k < 9. The third move should be (s = k, 0, k). Weleam
y+lk-y—z+1lz-kl Sincek < y + z(ifk = z then this is obvious, while if

k =9 - xthenk —y -z =9 — 5), thisisjusty + (y + z - k) + (k = z) = 2y. Thus we
know y, and hence x + z. So we know whether kiszor 9 — x, and we are done.

Case2b: s — k > 9. The third move should be (9,5 — k - 9,k). Welearn
Is—k-—x—y|+|s—9—y—z|+|9+k—x—z|,whichis

k-2)+9-x)+ O +k-x-2) =18 + 2k - 2(x + z). Soweknow x + z, and so
we know whether k is z or 9 — x. In either case, we know one of x and z,and from x + z we
may deduce the other one, and we are done.

Comments

1. Case 1 is the natural, simple case to deal with first. And then, in Case 2, the key idea is to
use s itself in the triple we ask. Similarly, in Case 2a the key idea is to somehow include k
in the triple we ask, while Case 2b is just a more complicated version of Case 2a. One could
view the second move in Case 2 as the obvious modification of the second move in Case 1
when s is ‘out of range’, and similarly the third move in Case 2b is the obvious modification
of the third move in Case 2a.

2. Astwo moves only just fail, it is very natural to guess that three moves is the right answer.
But finding an actual strategy seems complicated. This question requires clarity of thought,
but no specialist knowledge at all.

3. There is nothing special about the fact that there are 10 possible values for each digit.
Changing 10 to a larger number, such as 2002, would not change the solution.
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CS. Letr > 2 be a fixed positive integer, and let F be an infinite family of sets, each of size r,
no two of which are disjoint. Prove that there exists a set of size r — 1 that meets each set in F.

Solution. We will show the following: if A is a set of size less than r that is contained in
infinitely many sets of F, then either A meets all sets in F (in which case we are done) or else
thereisanx ¢ A such that A U {x} is itself contained in infinitely many sets of F. Since there
certainly exists such a set A (for example, the empty set), we may then iterate this result 7 times
and we will be done (as a set of size r clearly cannot be contained in infinitely many sets of F!).
To prove the result, suppose that some set R = {x1, x2, ..., x,} in F is disjoint from A. Of the
infinitely many sets in F that contain A, each must meet R, and so some x; is a member of
infinitely many of them. So we may takex = x;.

Comments

1. Although the above proof is very short, it does seem to require a creative insight, namely the
clever auxiliary result we prove.

2. An alternative proof is to note that, if the result is false, then for each set R in F, and each
pointx € R, thesetR — {x} is not suitable, so that there must be a set S in F with
R N § = {x}. In other words, each point x belonging to some set in F is the intersection of
two sets in F. This implies that there is no finite set ¥ with the property that any two sets in
F must meet at some point belonging to Y. Although this is highly implausible, it does seem
tricky to prove impossible. The simplest way is probably to prove a stronger result: that if F
and G are families of r-sets, with each member of F meeting each member of G, then there
exists a finite set ¥ such that each member of F meets each member of G at some point of Y.
This goes easily by induction on r.
As in the proof above, this proof requires a key creative insight, namely the generalisation
from one family to two. This does suggest that the problem may be quite hard.
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C6. Let n be an even positive integer. Show that there is a permutation x,, x,, ... , x, of
1, 2, ..., nsuchthatforevery1 < i < nthe numberyx;,,isoneof 2x;, 2x; — 1, 2x; — n,
2x; — n — 1 (where we take x,,, ;1 = xy).

Solution. Write n = 2m. We shall define a directed graph G with vertices labelled 1, ... , m
and edges labelled 1, ... , 2m. The edges issuing from vertex i are labelled 2i — 1 and 2i, and
those entering it are labelled i and i + m.

The underlying graph of G is connected: by induction on j there is a path from 1 to j since if

J > lthenj = 2k — 1or2kwith1 < k < jand there is an edge from & to j. Also, the
indegree and outdegree of each vertex is the same (namely 2). The directed graph G thus has an
Euler circuit. Let x; be the label of the i-th edge in such a circuit. If edge x; enters and edge
X;+1 leaves vertex jthenx; = j (modm)and x;,, = 2j — 1 or2j. Hence

2x; = 2j (mod2m = n)andsox;,; = 2x; — 1 or 2x; (mod n) as is required.

Comments

1. The problem requires one to prove the existence of a Hamilton cycle in a certain graph.
There is no obvious way to do this. The above solution avoids this difficulty by
constructing a directed graph on a smaller vertex set whose edges are labelled 1, 2, ...,nin
such a way that an Euler circuit (a closed walk that traverses each edge exactly once)
corresponds to the desired permutation.

2. The above proof uses the simple fact that if all indegrees and outdegrees are equal (and the
underlying graph is connected) then there is an Euler circuit. This is very easy to prove, for
example by considering a closed walk of maximal length. Indeed, the proposer’s solution
does essentially the same thing with bare hands.

3. Although the above solution is short, it is definitely hard to think of. There is a slight
similarity with the construction of de Bruijn sequences, but this is only apparent with
hindsight once one has written down the proof.
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C7. Among a group of 120 people, some pairs are friends. A weak quartet is a set of four
people containing exactly one pair of friends. What is the maximum possible number of weak
quartets?

Solution. We proceed in three steps. First, we will show that, for a maximum number of weak
quartets, our graph (thinking of the friends as defining a graph on 120 vertices) breaks up as a
disjoint union of complete graphs. Then we show that these complete graphs have sizes that are
as equal as possible (ie. differ by at most 1 from each other). And lastly we will find which of
these is the best.

For the first step, we would like to show that any two adjacent vertices have the same
neighbours (apart from themselves, of course). For a graph G on our 120 vertices, write Q (G)
for the number of weak quartets in G. For adjacent vertices x, y of G, let G’ be the graph
formed from G by ‘copying’ y to x: in other words, for each z # x, y, we add the edge xz if yz is
an edge and we remove the edge xz if yz is not an edge. Similarly, let G” be the graph formed
from G by copying x to y.

We claim that 0 (G) < 1 (Q(G") + Q(G”)). Indeed, let us compare the weak quartets in G
with those in G’ and G”. The number of weak quartets containing neither x nor y is the same in
G, G’ and G”, while the number containing both x and y is at least as great in G’ and G” as it is
in G. The number containing y but not x in G is at least twice what it is in G, while the number
containing x but not y in G” is at least twice what it is in G. This establishes our claim.

It follows that, for an extremal G, we must have Q (G) = Q(G’) = Q(G”). So we may repeat
this copying operation pair by pair, to obtain a graph in which any two adjacent vertices have
the same common neighbours. Indeed, if x and y are two adjacent vertices then we copy y to x;
if there another vertex z adjacent to x (and so also to y) then we copy z to x and then to y, and so
on. This completes the first step.

Our aim now is to show that the sizes of the complete graphs in G may be taken to be as equal
as possible. There are various ways to do this: one way is as follows. Let the complete graphs
in G have sizes aj, a3, ... , a., Where, just for convenience in what is to follow, we allow

a; = 0. Then we have

n a;

Q©G) = Y, (2) Y 4o
i=1 j<k ki

a
2
us consider two of the a;, say a and b, and let us see how Q (G) varies as we change the values

of a and b (keeping the other values, and the sum a + b, fixed). We have

o0 <9+ [5) <l 9

where A, B, C do not depend on a or b. If we swap a and b, we get the same expression, which
tells us that the expression is a quadratic, symmetric about s /2, where s is the fixed sum a + b.
(The expression may appear to be cubic, but it is easy to see that there is no cubic term, either
by direct calculation or because no cubic can be symmetric!)

This tells us that the maximum when 0 < a < soccurs eitherata = s/2orata = 0 (and

a = ), and that the maximum value for integer a occurs whena = 0 or whena = b or when
b + 1. Repeating for each pair of the a;, we have completed the second step.

(Here as usual we just take ( ) tomean a(a — 1)/2, to cover the case whena < 2.) Now, let

a
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Our final step is some calculation. Writing n for the number of (non-empty) complete graphs,
we see that

2

whenever n divides 120. It is easy to check that, for n < 6, the maximum occurs atn = 35,
with value 15.23.243. Moreover, because of the fact that the maximum over all real g; in the
previous paragraph occurred when all the non-zero g; were equal, we also know that the
maximum possible value of Q (G) is at most the maximum value of the expression

n(120/n)(n -2— 1)(120/n)2

0(G) = n(m/")(” N 1)(120/;1)2

2

as n varies from 3 to 120. But this function is at most 120*(n — 1)(n — 2)/4n’, whichisa
decreasing function of n forn > 6 and is at most 15.23.24* forn = 7. This completes the
third step: the maximum value is 15.23.24%,

Comments

1. The rough strategy outlined at the start of the proof is not too hard to think of. However, the
actual extremal configuration (with 5 complete graphs of size 24) is far from obvious. In
addition, fitting in the detail to implement the outline strategy presents a number of
challenges. The hardest of these is the first step, to show that we have a disjoint union of
complete graphs.

2. The number 120 has been chosen to make the numerical calculations as simple as possible.
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